enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Banach space - Wikipedia

    en.wikipedia.org/wiki/Banach_space

    In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space.Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.

  3. ba space - Wikipedia

    en.wikipedia.org/wiki/Ba_space

    There is an obvious algebraic duality between the vector space of all finitely additive measures σ on Σ and the vector space of simple functions (() = ()). It is easy to check that the linear form induced by σ is continuous in the sup-norm if σ is bounded, and the result follows since a linear form on the dense subspace of simple functions ...

  4. List of Banach spaces - Wikipedia

    en.wikipedia.org/wiki/List_of_Banach_spaces

    Tsirelson space, a reflexive Banach space in which neither nor can be embedded. W.T. Gowers construction of a space X {\displaystyle X} that is isomorphic to X ⊕ X ⊕ X {\displaystyle X\oplus X\oplus X} but not X ⊕ X {\displaystyle X\oplus X} serves as a counterexample for weakening the premises of the Schroeder–Bernstein theorem [ 1 ]

  5. Type and cotype of a Banach space - Wikipedia

    en.wikipedia.org/wiki/Type_and_cotype_of_a...

    In functional analysis, the type and cotype of a Banach space are a classification of Banach spaces through probability theory and a measure, how far a Banach space from a Hilbert space is. The starting point is the Pythagorean identity for orthogonal vectors ( e k ) k = 1 n {\displaystyle (e_{k})_{k=1}^{n}} in Hilbert spaces

  6. Banach manifold - Wikipedia

    en.wikipedia.org/wiki/Banach_manifold

    In mathematics, a Banach manifold is a manifold modeled on Banach spaces. Thus it is a topological space in which each point has a neighbourhood homeomorphic to an open set in a Banach space (a more involved and formal definition is given below). Banach manifolds are one possibility of extending manifolds to infinite dimensions.

  7. Hahn–Banach theorem - Wikipedia

    en.wikipedia.org/wiki/Hahn–Banach_theorem

    The theorem is named for the mathematicians Hans Hahn and Stefan Banach, who proved it independently in the late 1920s.The special case of the theorem for the space [,] of continuous functions on an interval was proved earlier (in 1912) by Eduard Helly, [1] and a more general extension theorem, the M. Riesz extension theorem, from which the Hahn–Banach theorem can be derived, was proved in ...

  8. Open mapping theorem (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/Open_mapping_theorem...

    In functional analysis, the open mapping theorem, also known as the Banach–Schauder theorem or the Banach theorem [1] (named after Stefan Banach and Juliusz Schauder), is a fundamental result that states that if a bounded or continuous linear operator between Banach spaces is surjective then it is an open map.

  9. Orlicz space - Wikipedia

    en.wikipedia.org/wiki/Orlicz_space

    In mathematical analysis, and especially in real, harmonic analysis and functional analysis, an Orlicz space is a type of function space which generalizes the L p spaces. Like the L p spaces, they are Banach spaces. The spaces are named for Władysław Orlicz, who was the first to define them in 1932.