Search results
Results from the WOW.Com Content Network
In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space.Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.
Tsirelson space, a reflexive Banach space in which neither nor can be embedded. W.T. Gowers construction of a space X {\displaystyle X} that is isomorphic to X ⊕ X ⊕ X {\displaystyle X\oplus X\oplus X} but not X ⊕ X {\displaystyle X\oplus X} serves as a counterexample for weakening the premises of the Schroeder–Bernstein theorem [ 1 ]
An inner product naturally induces an associated norm, (denoted | | and | | in the picture); so, every inner product space is a normed vector space. If this normed space is also complete (that is, a Banach space) then the inner product space is a Hilbert space. [1]
The normed vector space ((,), ‖ ‖) is called space or the Lebesgue space of -th power integrable functions and it is a Banach space for every (meaning that it is a complete metric space, a result that is sometimes called the Riesz–Fischer theorem).
Therefore, the space of square integrable functions is a Banach space, under the metric induced by the norm, which in turn is induced by the inner product. As we have the additional property of the inner product, this is specifically a Hilbert space , because the space is complete under the metric induced by the inner product.
Banach space, normed vector spaces which are complete with respect to the metric induced by the norm; Banach–Mazur compactum – Concept in functional analysis; Finsler manifold, where the length of each tangent vector is determined by a norm; Inner product space, normed vector spaces where the norm is given by an inner product
This article will deal with the second, called a L-semi-inner product or semi-inner product in the sense of Lumer, which is an inner product not required to be conjugate symmetric. It was formulated by Günter Lumer , for the purpose of extending Hilbert space type arguments to Banach spaces in functional analysis . [ 1 ]
Every inner product space is also a normed space. A normed space underlies an inner product space if and only if it satisfies the parallelogram law, or equivalently, if its unit ball is an ellipsoid. Angles between vectors are defined in inner product spaces. A Hilbert space is defined as a complete inner product space. (Some authors insist ...