Search results
Results from the WOW.Com Content Network
Thus the length of a curve is a non-negative real number. Usually no curves are considered which are partly spacelike and partly timelike. In theory of relativity, arc length of timelike curves (world lines) is the proper time elapsed along the world line, and arc length of a spacelike curve the proper distance along the curve.
A double-end Euler spiral. The curve continues to converge to the points marked, as t tends to positive or negative infinity. An Euler spiral is a curve whose curvature changes linearly with its curve length (the curvature of a circular curve is equal to the reciprocal of the radius). This curve is also referred to as a clothoid or Cornu spiral.
The equation of a line is given by = +. The equation of the normal of that line which passes through the point P is given y = x 0 − x m + y 0 {\displaystyle y={\frac {x_{0}-x}{m}}+y_{0}} . The point at which these two lines intersect is the closest point on the original line to the point P.
The chord function can be related to the modern sine function, by taking one of the points to be (1,0), and the other point to be (cos θ, sin θ), and then using the Pythagorean theorem to calculate the chord length: [2]
The two squared formulas inside the square root give the areas of squares on the horizontal and vertical sides, and the outer square root converts the area of the square on the hypotenuse into the length of the hypotenuse. [3] It is also possible to compute the distance for points given by polar coordinates.
The vectors T and N at two points on a plane curve, a translated version of the second frame (dotted), and δT the change in T. Here δs is the distance between the points. In the limit dT / ds will be in the direction N. The curvature describes the rate of rotation of the frame.
A locally shortest path between two given points in a curved space, assumed [a] to be a Riemannian manifold, can be defined by using the equation for the length of a curve (a function f from an open interval of R to the space), and then minimizing this length between the points using the calculus of variations. This has some minor technical ...
Free-space diagram of the red and the blue curve. In contrast to the definition in the text, which uses the parameter interval [0,1] for both curves, the curves are parameterized by arc length in this example. An important tool for calculating the Fréchet distance of two curves is the free-space diagram, which was introduced by Alt and Godau. [4]