enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Isotomic conjugate - Wikipedia

    en.wikipedia.org/wiki/Isotomic_conjugate

    In may 2021, Dao Thanh Oai given a generalization of Isotomic conjugate as follows: [1] Let ABC be a triangle, P be a point on its plane and Ω an arbitrary circumconic of ABC. Lines AP, BP, CP cuts again Ω at A', B', C' respectively, and parallel lines through these points to BC, CA, AB cut Ω again at A", B", C" respectively.

  3. Lester's theorem - Wikipedia

    en.wikipedia.org/wiki/Lester's_theorem

    In 2000, Bernard Gibert proposed a generalization of the Lester Theorem involving the Kiepert hyperbola of a triangle. His result can be stated as follows: Every circle with a diameter that is a chord of the Kiepert hyperbola and perpendicular to the triangle's Euler line passes through the Fermat points.

  4. Generalized trigonometry - Wikipedia

    en.wikipedia.org/wiki/Generalized_trigonometry

    Ordinary trigonometry studies triangles in the Euclidean plane ⁠ ⁠.There are a number of ways of defining the ordinary Euclidean geometric trigonometric functions on real numbers, for example right-angled triangle definitions, unit circle definitions, series definitions [broken anchor], definitions via differential equations [broken anchor], and definitions using functional equations.

  5. Isogonal conjugate - Wikipedia

    en.wikipedia.org/wiki/Isogonal_conjugate

    In May 2021, Dao Thanh Oai gave a generalization of the isogonal conjugate as follows: [2] Let ABC be a triangle, P a point on its plane and Ω an arbitrary circumconic of ABC. Lines AP, BP, CP cut again Ω at A', B', C' respectively, and parallel lines through these points to BC, CA, AB cut Ω again at A", B", C" respectively.

  6. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    Generalization for arbitrary triangles, green area = blue area Construction for proof of parallelogram generalization. Pappus's area theorem is a further generalization, that applies to triangles that are not right triangles, using parallelograms on the three sides in place of squares (squares are a special case, of course). The upper figure ...

  7. Pappus's area theorem - Wikipedia

    en.wikipedia.org/wiki/Pappus's_area_theorem

    Pappus's area theorem describes the relationship between the areas of three parallelograms attached to three sides of an arbitrary triangle. The theorem, which can also be thought of as a generalization of the Pythagorean theorem, is named after the Greek mathematician Pappus of Alexandria (4th century AD), who discovered it.

  8. Simplex - Wikipedia

    en.wikipedia.org/wiki/Simplex

    In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. For example, a 0-dimensional simplex is a point, a 1-dimensional simplex is a line segment,

  9. Ceva's theorem - Wikipedia

    en.wikipedia.org/wiki/Ceva's_theorem

    In Euclidean geometry, Ceva's theorem is a theorem about triangles. Given a triangle ABC, let the lines AO, BO, CO be drawn from the vertices to a common point O (not on one of the sides of ABC), to meet opposite sides at D, E, F respectively. (The segments AD, BE, CF are known as cevians.) Then, using signed lengths of segments,