enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Triangle inequality - Wikipedia

    en.wikipedia.org/wiki/Triangle_inequality

    The top example shows a case where z is much less than the sum x + y of the other two sides, and the bottom example shows a case where the side z is only slightly less than x + y. In mathematics, the triangle inequality states that for any triangle, the sum of the lengths of any two sides must be greater than or equal to the length of the ...

  3. Generalization - Wikipedia

    en.wikipedia.org/wiki/Generalization

    A polygon is a generalization of a 3-sided triangle, a 4-sided quadrilateral, and so on to n sides. A hypercube is a generalization of a 2-dimensional square, a 3-dimensional cube, and so on to n dimensions. A quadric, such as a hypersphere, ellipsoid, paraboloid, or hyperboloid, is a generalization of a conic section to higher dimensions.

  4. Generalized trigonometry - Wikipedia

    en.wikipedia.org/wiki/Generalized_trigonometry

    Ordinary trigonometry studies triangles in the Euclidean plane ⁠ ⁠.There are a number of ways of defining the ordinary Euclidean geometric trigonometric functions on real numbers, for example right-angled triangle definitions, unit circle definitions, series definitions [broken anchor], definitions via differential equations [broken anchor], and definitions using functional equations.

  5. Simplex - Wikipedia

    en.wikipedia.org/wiki/Simplex

    In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. For example, a 0-dimensional simplex is a point, a 1-dimensional simplex is a line segment,

  6. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    Generalization for arbitrary triangles, green area = blue area Construction for proof of parallelogram generalization. Pappus's area theorem is a further generalization, that applies to triangles that are not right triangles, using parallelograms on the three sides in place of squares (squares are a special case, of course). The upper figure ...

  7. Isogonal conjugate - Wikipedia

    en.wikipedia.org/wiki/Isogonal_conjugate

    In May 2021, Dao Thanh Oai gave a generalization of the isogonal conjugate as follows: [2] Let ABC be a triangle, P a point on its plane and Ω an arbitrary circumconic of ABC. Lines AP, BP, CP cut again Ω at A', B', C' respectively, and parallel lines through these points to BC, CA, AB cut Ω again at A", B", C" respectively.

  8. Sierpiński triangle - Wikipedia

    en.wikipedia.org/wiki/Sierpiński_triangle

    A generalization of the Sierpiński triangle can also be generated using Pascal's triangle if a different modulus is used. Iteration n {\displaystyle n} can be generated by taking a Pascal's triangle with P n {\displaystyle P^{n}} rows and coloring numbers by their value modulo P {\displaystyle P} .

  9. Jacobi's theorem (geometry) - Wikipedia

    en.wikipedia.org/wiki/Jacobi's_theorem_(geometry)

    The Jacobi point is a generalization of the Fermat point, which is obtained by letting α = β = γ = 60° and ABC having no angle being greater or equal to 120°. If the three angles above are equal, then N lies on the rectangular hyperbola given in areal coordinates by