Ad
related to: exam questions on diffusion and convection problems chemistry and sciencewyzant.com has been visited by 10K+ users in the past month
- In a Rush? Instant Book
Tell us When You Need Help and
Connect With the Right Instructor
- Choose Your Tutor
Review Tutor Profiles, Ratings
And Reviews To Find a Perfect Match
- Find a Tutor
Find Affordable Tutors at Wyzant.
1-on-1 Sessions From $25/hr.
- Tutors Near You
Expert Tutors, Private Sessions.
Tutors From $25/hr. Try Today.
- In a Rush? Instant Book
Search results
Results from the WOW.Com Content Network
The convection–diffusion equation can be derived in a straightforward way [4] from the continuity equation, which states that the rate of change for a scalar quantity in a differential control volume is given by flow and diffusion into and out of that part of the system along with any generation or consumption inside the control volume: + =, where j is the total flux and R is a net ...
Convection is always followed by diffusion and hence where convection is considered we have to consider combine effect of convection and diffusion. But in places where fluid flow plays a non-considerable role we can neglect the convective effect of the flow. In this case we have to consider more simplistic case of only diffusion.
The convection–diffusion equation describes the flow of heat, particles, or other physical quantities in situations where there is both diffusion and convection or advection. For information about the equation, its derivation, and its conceptual importance and consequences, see the main article convection–diffusion equation. This article ...
The hybrid difference scheme [1] [2] is a method used in the numerical solution for convection–diffusion problems. It was introduced by Spalding (1970). It is a combination of central difference scheme and upwind difference scheme as it exploits the favorable properties of both of these schemes.
The methods used for solving two dimensional Diffusion problems are similar to those used for one dimensional problems. The general equation for steady diffusion can be easily derived from the general transport equation for property Φ by deleting transient and convective terms [1]
Forced diffusion occurs because of the action of some external force; Diffusion can be caused by temperature gradients (thermal diffusion) Diffusion can be caused by differences in chemical potential; This can be compared to Fick's law of diffusion, for a species A in a binary mixture consisting of A and B:
Robin boundary conditions are commonly used in solving Sturm–Liouville problems which appear in many contexts in science and engineering. In addition, the Robin boundary condition is a general form of the insulating boundary condition for convection–diffusion equations. Here, the convective and diffusive fluxes at the boundary sum to zero:
Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...
Ad
related to: exam questions on diffusion and convection problems chemistry and sciencewyzant.com has been visited by 10K+ users in the past month