Search results
Results from the WOW.Com Content Network
De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.
Corner quotes, also called “Quine quotes”; for quasi-quotation, i.e. quoting specific context of unspecified (“variable”) expressions; [3] also used for denoting Gödel number; [4] for example “āGā” denotes the Gödel number of G. (Typographical note: although the quotes appears as a “pair” in unicode (231C and 231D), they ...
In mathematics and mathematical logic, Boolean algebra is a branch of algebra.It differs from elementary algebra in two ways. First, the values of the variables are the truth values true and false, usually denoted 1 and 0, whereas in elementary algebra the values of the variables are numbers.
That is, whatever A and B are, A ≤ B is equivalent to A < B or A = B. 2. Between two groups, may mean that the first one is a subgroup of the second one. ≥ 1. Means "greater than or equal to". That is, whatever A and B are, A ≥ B is equivalent to A > B or A = B. 2. Between two groups, may mean that the second one is a subgroup of the ...
But not every usage of a logical connective in computer programming has a Boolean semantic. For example, lazy evaluation is sometimes implemented for P ∧ Q and P ∨ Q, so these connectives are not commutative if either or both of the expressions P, Q have side effects.
P(A|B) may or may not be equal to P(A), i.e., the unconditional probability or absolute probability of A. If P(A|B) = P(A), then events A and B are said to be independent: in such a case, knowledge about either event does not alter the likelihood of each other. P(A|B) (the conditional probability of A given B) typically differs from P(B|A).
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
For example, a property which holds on a dense G δ (intersection of countably many open sets) is said to hold generically. In algebraic geometry , one says that a property of points on an algebraic variety that holds on a dense Zariski open set is true generically; however, it is usually not said that a property which holds merely on a dense ...