Search results
Results from the WOW.Com Content Network
An image intensifier or image intensifier tube is a vacuum tube device for increasing the intensity of available light in an optical system to allow use under low-light conditions, such as at night, to facilitate visual imaging of low-light processes, such as fluorescence of materials in X-rays or gamma rays (X-ray image intensifier), or for conversion of non-visible light sources, such as ...
Contrast ratio is also improved over image intensifiers; flat-panel detectors are linear over a very wide latitude, whereas image intensifiers have a maximum contrast ratio of about 35:1. Spatial resolution is roughly equal, although an image intensifier operating in magnification mode may be slightly better than a flat panel.
An X-ray image intensifier (XRII) is an image intensifier that converts X-rays into visible light at higher intensity than the more traditional fluorescent screens can. Such intensifiers are used in X-ray imaging systems (such as fluoroscopes) to allow low-intensity X-rays to be converted to a conveniently bright visible light output. The ...
Multicolor fluorescence image of living HeLa cells. Fluorescence imaging is a type of non-invasive imaging technique that can help visualize biological processes taking place in a living organism. Images can be produced from a variety of methods including: microscopy, imaging probes, and spectroscopy.
G-arm medical imaging systems are based on fluoroscopic X-ray and are used for a variety of diagnostic imaging and minimally invasive surgical procedures.The name is derived from the G-shaped arm used to connect two X-ray generators and two X-ray detectors, image intensifiers or digital flat panel detectors, to one another.
For fluoroscopy, they are lighter, far more durable, smaller in volume, more accurate, and have much less image distortion than x-ray image intensifiers and can also be produced with larger areas. [7] Disadvantages compared to IIs can include defective image elements, higher costs and lower spatial resolution. [8]
Fluorescence-lifetime imaging yields images with the intensity of each pixel determined by , which allows one to view contrast between materials with different fluorescence decay rates (even if those materials fluoresce at exactly the same wavelength), and also produces images which show changes in other decay pathways, such as in FRET imaging.
An image can be erased by simply exposing the plate to a room-level fluorescent light - but more efficient, complete erasure is required to avoid signal carry-over and artifacts. Most laser scanners automatically erase the plate (current technology uses red LED lighting) after laser scanning is complete.