enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Taylor expansions for the moments of functions of random ...

    en.wikipedia.org/wiki/Taylor_expansions_for_the...

    In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite. A simulation-based alternative to this approximation is the application of Monte Carlo simulations.

  3. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    That is, the Taylor series diverges at x if the distance between x and b is larger than the radius of convergence. The Taylor series can be used to calculate the value of an entire function at every point, if the value of the function, and of all of its derivatives, are known at a single point. Uses of the Taylor series for analytic functions ...

  4. Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor's_theorem

    Now its Taylor series centered at z 0 converges on any disc B(z 0, r) with r < |z − z 0 |, where the same Taylor series converges at z ∈ C. Therefore, Taylor series of f centered at 0 converges on B(0, 1) and it does not converge for any z ∈ C with |z| > 1 due to the poles at i and −i.

  5. Experimental uncertainty analysis - Wikipedia

    en.wikipedia.org/wiki/Experimental_uncertainty...

    Even if the PDF can be found, finding the moments (above) can be difficult. 4. The solution is to expand the function z in a second-order Taylor series; the expansion is done around the mean values of the several variables x. (Usually the expansion is done to first order; the second-order terms are needed to find the bias in the mean.

  6. First-order second-moment method - Wikipedia

    en.wikipedia.org/wiki/First-order_second-moment...

    For the second-order approximations of the third central moment as well as for the derivation of all higher-order approximations see Appendix D of Ref. [3] Taking into account the quadratic terms of the Taylor series and the third moments of the input variables is referred to as second-order third-moment method. [4]

  7. Characteristic function (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_function...

    That is, for any two random variables X 1, X 2, both have the same probability distribution if and only if =. [ citation needed ] If a random variable X has moments up to k -th order, then the characteristic function φ X is k times continuously differentiable on the entire real line.

  8. Propagation of uncertainty - Wikipedia

    en.wikipedia.org/wiki/Propagation_of_uncertainty

    Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables ⁡ (+) = ⁡ + ⁡ + ⁡ (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...

  9. Linearization - Wikipedia

    en.wikipedia.org/wiki/Linearization

    The linear approximation of a function is the first order Taylor expansion around the point of interest. In the study of dynamical systems , linearization is a method for assessing the local stability of an equilibrium point of a system of nonlinear differential equations or discrete dynamical systems . [ 1 ]