Search results
Results from the WOW.Com Content Network
The graph of any cubic function is similar to such a curve. The graph of a cubic function is a cubic curve, though many cubic curves are not graphs of functions. Although cubic functions depend on four parameters, their graph can have only very few shapes. In fact, the graph of a cubic function is always similar to the graph of a function of ...
Graph of the cubic function f(x) = 2x 3 − 3x 2 − 3x + 2 = (x + 1) (2x − 1) (x − 2) In the 7th century, the Tang dynasty astronomer mathematician Wang Xiaotong in his mathematical treatise titled Jigu Suanjing systematically established and solved numerically 25 cubic equations of the form x 3 + px 2 + qx = N , 23 of them with p , q ≠ ...
The number of connected simple cubic graphs on 4, 6, 8, 10, ... vertices is 1, 2, 5, 19, ... (sequence A002851 in the OEIS). A classification according to edge connectivity is made as follows: the 1-connected and 2-connected graphs are defined as usual. This leaves the other graphs in the 3-connected class because each 3-regular graph can be ...
Constant function: polynomial of degree zero, graph is a horizontal straight line; Linear function: First degree polynomial, graph is a straight line. Quadratic function: Second degree polynomial, graph is a parabola. Cubic function: Third degree polynomial. Quartic function: Fourth degree polynomial. Quintic function: Fifth degree polynomial.
According to Brooks' theorem every connected cubic graph other than the complete graph K 4 has a vertex coloring with at most three colors. Therefore, every connected cubic graph other than K 4 has an independent set of at least n/3 vertices, where n is the number of vertices in the graph: for instance, the largest color class in a 3-coloring has at least this many vertices.
Closed graph theorem for set-valued functions [6] — For a Hausdorff compact range space , a set-valued function : has a closed graph if and only if it is upper hemicontinuous and F(x) is a closed set for all .
The 1st equal areas cubic is the locus of a point X such that area of the cevian triangle of X equals the area of the cevian triangle of X*. Also, this cubic is the locus of X for which X* is on the line S*X, where S is the Steiner point. (S = X(99) in the Encyclopedia of Triangle Centers).
The two rightmost columns indicate which irreducible representations describe the symmetry transformations of the three Cartesian coordinates (x, y and z), rotations about those three coordinates (R x, R y and R z), and functions of the quadratic terms of the coordinates(x 2, y 2, z 2, xy, xz, and yz).