Search results
Results from the WOW.Com Content Network
In geometry, an angle of a polygon is formed by two adjacent sides. For a simple polygon (non-self-intersecting), regardless of whether it is convex or non-convex, this angle is called an internal angle (or interior angle) if a point within the angle is in the interior of the polygon. A polygon has exactly one internal angle per vertex.
An equilic quadrilateral has two opposite equal sides that when extended, meet at 60°. A Watt quadrilateral is a quadrilateral with a pair of opposite sides of equal length. [6] A quadric quadrilateral is a convex quadrilateral whose four vertices all lie on the perimeter of a square. [7]
The four sides can be split into two pairs of adjacent equal-length sides. [7] One diagonal crosses the midpoint of the other diagonal at a right angle, forming its perpendicular bisector. [9] (In the concave case, the line through one of the diagonals bisects the other.) One diagonal is a line of symmetry.
In geometry, a polygon (/ ˈ p ɒ l ɪ ɡ ɒ n /) is a plane figure made up of line segments connected to form a closed polygonal chain. The segments of a closed polygonal chain are called its edges or sides. The points where two edges meet are the polygon's vertices or corners. An n-gon is a polygon with n sides; for example, a triangle is a 3 ...
The perimeter of a parallelogram is 2(a + b) where a and b are the lengths of adjacent sides. Unlike any other convex polygon, a parallelogram cannot be inscribed in any triangle with less than twice its area. [7] The centers of four squares all constructed either internally or externally on the sides of a parallelogram are the vertices of a ...
A square is a special case of a rhombus (equal sides, opposite equal angles), a kite (two pairs of adjacent equal sides), a trapezoid (one pair of opposite sides parallel), a parallelogram (all opposite sides parallel), a quadrilateral or tetragon (four-sided polygon), and a rectangle (opposite sides equal, right-angles), and therefore has all ...
Any non-self-crossing quadrilateral with exactly one axis of symmetry must be either an isosceles trapezoid or a kite. [5] However, if crossings are allowed, the set of symmetric quadrilaterals must be expanded to include also the crossed isosceles trapezoids, crossed quadrilaterals in which the crossed sides are of equal length and the other sides are parallel, and the antiparallelograms ...
The corresponding angles as well as the corresponding sides are defined as appearing in the same sequence, so for example if in a polygon with the side sequence abcde and another with the corresponding side sequence vwxyz we have vertex angle a appearing between sides a and b then its corresponding vertex angle v must appear between sides v and w.