enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. RC time constant - Wikipedia

    en.wikipedia.org/wiki/RC_time_constant

    The following formulae use it, assuming a constant voltage applied across the capacitor and resistor in series, to determine the voltage across the capacitor against time: Charging toward applied voltage (initially zero voltage across capacitor, constant V 0 across resistor and capacitor together) V 0 : V ( t ) = V 0 ( 1 − e − t / τ ...

  3. RC circuit - Wikipedia

    en.wikipedia.org/wiki/RC_circuit

    These equations are for calculating the voltage across the capacitor and resistor respectively while the capacitor is charging; for discharging, the equations are vice versa. These equations can be rewritten in terms of charge and current using the relationships C = ⁠ Q / V ⁠ and V = IR (see Ohm's law).

  4. Electrical impedance - Wikipedia

    en.wikipedia.org/wiki/Electrical_impedance

    The phase angles in the equations for the impedance of capacitors and inductors indicate that the voltage across a capacitor lags the current through it by a phase of /, while the voltage across an inductor leads the current through it by /. The identical voltage and current amplitudes indicate that the magnitude of the impedance is equal to one.

  5. Capacitor - Wikipedia

    en.wikipedia.org/wiki/Capacitor

    Electrical current affects the charge differential across a capacitor just as the flow of water affects the volume differential across a diaphragm. Just as capacitors experience dielectric breakdown when subjected to high voltages, diaphragms burst under extreme pressures.

  6. Capacitance - Wikipedia

    en.wikipedia.org/wiki/Capacitance

    Combining the equation for capacitance with the above equation for the energy stored in a capacitor, for a flat-plate capacitor the energy stored is: = =. where is the energy, in joules; is the capacitance, in farads; and is the voltage, in volts.

  7. RLC circuit - Wikipedia

    en.wikipedia.org/wiki/RLC_circuit

    An equal magnitude voltage will also be seen across the capacitor but in antiphase to the inductor. If R can be made sufficiently small, these voltages can be several times the input voltage. The voltage ratio is, in fact, the Q of the circuit,

  8. LC circuit - Wikipedia

    en.wikipedia.org/wiki/LC_circuit

    When the inductor (L) and capacitor (C) are connected in parallel as shown here, the voltage V across the open terminals is equal to both the voltage across the inductor and the voltage across the capacitor. The total current I flowing into the positive terminal of the circuit is equal to the sum of the current flowing through the inductor and ...

  9. Displacement current - Wikipedia

    en.wikipedia.org/wiki/Displacement_current

    In electromagnetism, displacement current density is the quantity ∂D/∂t appearing in Maxwell's equations that is defined in terms of the rate of change of D, the electric displacement field. Displacement current density has the same units as electric current density, and it is a source of the magnetic field just as actual