enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Deflection (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deflection_(engineering)

    The deflection distance of a member under a load can be calculated by integrating the function that mathematically describes the slope of the deflected shape of the member under that load. Standard formulas exist for the deflection of common beam configurations and load cases at discrete locations.

  3. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    Euler–Bernoulli beam theory can also be extended to the analysis of curved beams, beam buckling, composite beams, and geometrically nonlinear beam deflection. Euler–Bernoulli beam theory does not account for the effects of transverse shear strain. As a result, it underpredicts deflections and overpredicts natural frequencies.

  4. Macaulay's method - Wikipedia

    en.wikipedia.org/wiki/Macaulay's_method

    Macaulay's method (the double integration method) is a technique used in structural analysis to determine the deflection of Euler-Bernoulli beams.Use of Macaulay's technique is very convenient for cases of discontinuous and/or discrete loading.

  5. Euler's critical load - Wikipedia

    en.wikipedia.org/wiki/Euler's_critical_load

    This formula was derived in 1744 by the Swiss mathematician Leonhard Euler. [2] The column will remain straight for loads less than the critical load. The critical load is the greatest load that will not cause lateral deflection (buckling). For loads greater than the critical load, the column will deflect laterally.

  6. Conjugate beam method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_beam_method

    The conjugate-beam methods is an engineering method to derive the slope and displacement of a beam. A conjugate beam is defined as an imaginary beam with the same dimensions (length) as that of the original beam but load at any point on the conjugate beam is equal to the bending moment at that point divided by EI. [1]

  7. Moment-area theorem - Wikipedia

    en.wikipedia.org/wiki/Moment-Area_Theorem

    The moment-area theorem is an engineering tool to derive the slope, rotation and deflection of beams and frames. This theorem was developed by Mohr and later stated namely by Charles Ezra Greene in 1873.

  8. Slope deflection method - Wikipedia

    en.wikipedia.org/wiki/Slope_deflection_method

    The slope deflection method is a structural analysis method for beams and frames introduced in 1914 by George A. Maney. [1] The slope deflection method was widely used for more than a decade until the moment distribution method was developed. In the book, "The Theory and Practice of Modern Framed Structures", written by J.B Johnson, C.W. Bryan ...

  9. Theorem of three moments - Wikipedia

    en.wikipedia.org/wiki/Theorem_of_three_moments

    The deflection downward positive. (Downward settlement positive) Let ABC is a continuous beam with support at A,B, and C. Then moment at A,B, and C are M1, M2, and M3, respectively. Let A' B' and C' be the final positions of the beam ABC due to support settlements. Figure 04-Deflection Curve of a Continuous Beam Under Settlement