Search results
Results from the WOW.Com Content Network
The Brønsted–Lowry theory (also called proton theory of acids and bases [1]) is an acid–base reaction theory which was first developed by Johannes Nicolaus Brønsted and Thomas Martin Lowry independently in 1923.
If a dynamic equilibrium is disturbed by changing the conditions, the position of equilibrium moves to partially reverse the change. For example, adding more S (to the chemical reaction above) from the outside will cause an excess of products, and the system will try to counteract this by increasing the reverse reaction and pushing the ...
[11] Assume two products B and C form in a reaction: a A + d D → b B, a A + d D → c C. In this case, K eq can be defined as ratio of B to C rather than the equilibrium constant. When B / C > 1, B is the favored product, and the data on the Van 't Hoff plot will be in the positive region.
Physical chemistry, in contrast to chemical physics, is predominantly (but not always) a supra-molecular science, as the majority of the principles on which it was founded relate to the bulk rather than the molecular or atomic structure alone (for example, chemical equilibrium and colloids).
A stirred BZ reaction mixture showing changes in color over time. The discovery of the phenomenon is credited to Boris Belousov.In 1951, while trying to find the non-organic analog to the Krebs cycle, he noted that in a mix of potassium bromate, cerium(IV) sulfate, malonic acid, and citric acid in dilute sulfuric acid, the ratio of concentration of the cerium(IV) and cerium(III) ions ...
Partial equilibrium, the equilibrium price and quantity which come from the cross of supply and demand in a competitive market; Radner equilibrium, an economic concept defined by economist Roy Radner in the context of general equilibrium; Recursive competitive equilibrium, an economic equilibrium concept associated with a dynamic program
which relates the Gibbs energy to a chemical equilibrium constant, the van 't Hoff equation can be derived. [ 9 ] Since the change in a system's Gibbs energy is equal to the maximum amount of non-expansion work that the system can do in a process, the Gibbs-Helmholtz equation may be used to estimate how much non-expansion work can be done by a ...
In chemistry, Le Chatelier's principle (pronounced UK: / l ə ʃ æ ˈ t ɛ l j eɪ / or US: / ˈ ʃ ɑː t əl j eɪ /) [1] is a principle used to predict the effect of a change in conditions on chemical equilibrium. [2] Other names include Chatelier's principle, Braun–Le Chatelier principle, Le Chatelier–Braun principle or the equilibrium ...