Search results
Results from the WOW.Com Content Network
In a fission nuclear reactor, uranium-238 can be used to generate plutonium-239, which itself can be used in a nuclear weapon or as a nuclear-reactor fuel supply. In a typical nuclear reactor, up to one-third of the generated power comes from the fission of 239 Pu, which is not supplied as a fuel to the reactor, but rather, produced from 238 U. [5] A certain amount of production of 239
All three isotopes are radioactive (i.e., they are radioisotopes), and the most abundant and stable is uranium-238, with a half-life of 4.4683 × 10 9 years (about the age of the Earth). Uranium-238 is an alpha emitter, decaying through the 18-member uranium series into lead-206. The decay series of uranium-235 (historically called actino ...
Pu-239 is produced artificially in nuclear reactors when a neutron is absorbed by U-238, forming U-239, which then decays in a rapid two-step process into Pu-239. [22] It can then be separated from the uranium in a nuclear reprocessing plant. [23] Weapons-grade plutonium is defined as being predominantly Pu-239, typically about 93% Pu-239. [24]
Natural uranium (NU or U nat [1]) is uranium with the same isotopic ratio as found in nature. It contains 0.711% uranium-235 , 99.284% uranium-238 , and a trace of uranium-234 by weight (0.0055%). Approximately 2.2% of its radioactivity comes from uranium-235, 48.6% from uranium-238, and 49.2% from uranium-234.
96% of the mass is the remaining uranium: most of the original 238 U and a little 235 U. Usually 235 U would be less than 0.8% of the mass along with 0.4% 236 U. Reprocessed uranium will contain 236 U, which is not found in nature; this is one isotope that can be used as a fingerprint for spent reactor fuel.
Both plutonium-239 and uranium-235 are obtained from Natural uranium, which primarily consists of uranium-238 but contains traces of other isotopes of uranium such as uranium-235. The process of enriching uranium , i.e. increasing the ratio of 235 U to 238 U to weapons grade, is generally a more lengthy and costly process than the production of ...
Specific activity (symbol a) is the activity per unit mass of a radionuclide and is a physical property of that radionuclide. [ 1 ] [ 2 ] It is usually given in units of becquerel per kilogram (Bq/kg), but another commonly used unit of specific activity is the curie per gram (Ci/g).
Plutonium-238 was the first isotope of plutonium to be discovered. It was synthesized by Glenn Seaborg and associates in December 1940 by bombarding uranium-238 with deuterons, creating neptunium-238. 238 92 U + 2 1 H → 238 93 Np + 2 n. The neptunium isotope then undergoes β − decay to plutonium-238, with a half-life of 2.12 days: [6] 238 ...