enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Uranium-238 - Wikipedia

    en.wikipedia.org/wiki/Uranium-238

    In a fission nuclear reactor, uranium-238 can be used to generate plutonium-239, which itself can be used in a nuclear weapon or as a nuclear-reactor fuel supply. In a typical nuclear reactor, up to one-third of the generated power comes from the fission of 239 Pu, which is not supplied as a fuel to the reactor, but rather, produced from 238 U. [5] A certain amount of production of 239

  3. List of radioactive nuclides by half-life - Wikipedia

    en.wikipedia.org/wiki/List_of_radioactive...

    Radioactive isotope table "lists ALL radioactive nuclei with a half-life greater than 1000 years", incorporated in the list above. The NUBASE2020 evaluation of nuclear physics properties F.G. Kondev et al. 2021 Chinese Phys. C 45 030001. The PDF of this article lists the half-lives of all known radioactives nuclides.

  4. Isotopes of uranium - Wikipedia

    en.wikipedia.org/wiki/Isotopes_of_uranium

    234 U occurs in natural uranium as an indirect decay product of uranium-238, but makes up only 55 parts per million of the uranium because its half-life of 245,500 years is only about 1/18,000 that of 238 U. The path of production of 234 U is this: 238 U alpha decays to thorium-234. Next, with a short half-life, 234 Th beta decays to ...

  5. Uranium - Wikipedia

    en.wikipedia.org/wiki/Uranium

    Uranium-234 is a member of the uranium series and occurs in equilibrium with its progenitor, 238 U; it undergoes alpha decay with a half-life of 245,500 years [7] and decays to lead-206 through a series of relatively short-lived isotopes. Uranium-233 undergoes alpha decay with a half-life of 160,000 years and, like 235 U, is fissile. [12]

  6. Decay chain - Wikipedia

    en.wikipedia.org/wiki/Decay_chain

    The three long-lived nuclides are uranium-238 (half-life 4.5 billion years), uranium-235 (half-life 700 million years) and thorium-232 (half-life 14 billion years). The fourth chain has no such long-lasting bottleneck nuclide near the top, so almost all of the nuclides in that chain have long since decayed down to just before the end: bismuth-209.

  7. Spent nuclear fuel - Wikipedia

    en.wikipedia.org/wiki/Spent_nuclear_fuel

    96% of the mass is the remaining uranium: most of the original 238 U and a little 235 U. Usually 235 U would be less than 0.8% of the mass along with 0.4% 236 U. Reprocessed uranium will contain 236 U, which is not found in nature; this is one isotope that can be used as a fingerprint for spent reactor fuel.

  8. Radiometric dating - Wikipedia

    en.wikipedia.org/wiki/Radiometric_dating

    One of its great advantages is that any sample provides two clocks, one based on uranium-235's decay to lead-207 with a half-life of about 700 million years, and one based on uranium-238's decay to lead-206 with a half-life of about 4.5 billion years, providing a built-in crosscheck that allows accurate determination of the age of the sample ...

  9. List of nuclides - Wikipedia

    en.wikipedia.org/wiki/List_of_nuclides

    The decay energy listed is for the specific nuclide only, not for the whole decay chain. It includes the energy lost to neutrinos. notes column CG Cosmogenic nuclide; DP Naturally occurring decay product (of thorium-232, uranium-238, and uranium-235); ESS Present in the early Solar System (first few million years), but extinct now as a ...