Search results
Results from the WOW.Com Content Network
If the output voltage is too low (perhaps due to input voltage reducing or load current increasing), the regulation element is commanded, up to a point, to produce a higher output voltage–by dropping less of the input voltage (for linear series regulators and buck switching regulators), or to draw input current for longer periods (boost-type ...
A low line regulation is always preferred. In practice, a well regulated power supply should have a line regulation of at most 0.1%. [1] In the regulator device datasheets the line regulation is expressed as percent change in output with respect to change in input per volt of the output. Mathematically it is expressed as:
The red curve shows the power in the load, normalized relative to its maximum possible. The dark blue curve shows the efficiency η. The efficiency η is the ratio of the power dissipated by the load resistance R L to the total power dissipated by the circuit (which includes the voltage source's resistance of R S as well as R L):
Switching power supplies have lower efficiency due to low output voltage levels (often even less than 2 V for microprocessors are needed) but still more than 70–80% efficiency can be achieved. Variable-speed computer fan controllers usually use PWM, as it is far more efficient when compared to a potentiometer or rheostat.
The output impedance is a measure of the source's propensity to drop in voltage when the load draws current, the source network being the portion of the network that transmits and the load network being the portion of the network that consumes. Because of this the output impedance is sometimes referred to as the source impedance or internal ...
Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.
Unit labor costs - the price of labor per single unit of output - increased at a 0.8% annualized rate last quarter, the Labor Department's Bureau of Labor Statistics said.
Low-dropout (LDO) regulators operate similarly to all linear voltage regulators.The main difference between LDO and non-LDO regulators is their schematic topology.Instead of an emitter follower topology, low-dropout regulators consist of an open collector or open drain topology, where the transistor may be easily driven into saturation with the voltages available to the regulator.