enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Maximum a posteriori estimation - Wikipedia

    en.wikipedia.org/wiki/Maximum_a_posteriori...

    An estimation procedure that is often claimed to be part of Bayesian statistics is the maximum a posteriori (MAP) estimate of an unknown quantity, that equals the mode of the posterior density with respect to some reference measure, typically the Lebesgue measure.

  3. Posterior probability - Wikipedia

    en.wikipedia.org/wiki/Posterior_probability

    Posterior probability is a conditional probability conditioned on randomly observed data. Hence it is a random variable. For a random variable, it is important to summarize its amount of uncertainty. One way to achieve this goal is to provide a credible interval of the posterior probability. [11]

  4. Laplace's approximation - Wikipedia

    en.wikipedia.org/wiki/Laplace's_approximation

    where ^ is the location of a mode of the joint target density, also known as the maximum a posteriori or MAP point and is the positive definite matrix of second derivatives of the negative log joint target density at the mode = ^. Thus, the Gaussian approximation matches the value and the log-curvature of the un-normalised target density at the ...

  5. Expectation–maximization algorithm - Wikipedia

    en.wikipedia.org/wiki/Expectation–maximization...

    Finding a maximum likelihood solution typically requires taking the derivatives of the likelihood function with respect to all the unknown values, the parameters and the latent variables, and simultaneously solving the resulting equations. In statistical models with latent variables, this is usually impossible.

  6. Bayes estimator - Wikipedia

    en.wikipedia.org/wiki/Bayes_estimator

    In estimation theory and decision theory, a Bayes estimator or a Bayes action is an estimator or decision rule that minimizes the posterior expected value of a loss function (i.e., the posterior expected loss).

  7. Viterbi algorithm - Wikipedia

    en.wikipedia.org/wiki/Viterbi_algorithm

    The Viterbi algorithm is a dynamic programming algorithm for obtaining the maximum a posteriori probability estimate of the most likely sequence of hidden states—called the Viterbi path—that results in a sequence of observed events.

  8. What College Football Playoff games are today? Breaking down ...

    www.aol.com/college-football-playoff-games-today...

    The College Football Playoff got underway Friday but the main course is spread out through Saturday. Three first-round games will be played across three separate campus sites from State College ...

  9. Prior probability - Wikipedia

    en.wikipedia.org/wiki/Prior_probability

    For example, the maximum entropy prior on a discrete space, given only that the probability is normalized to 1, is the prior that assigns equal probability to each state. And in the continuous case, the maximum entropy prior given that the density is normalized with mean zero and unit variance is the standard normal distribution.