enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Homolysis (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Homolysis_(chemistry)

    Bond cleavage is also possible by a process called heterolysis. The energy involved in this process is called bond dissociation energy (BDE). [2] BDE is defined as the "enthalpy (per mole) required to break a given bond of some specific molecular entity by homolysis," symbolized as D. [3]

  3. Bond energy - Wikipedia

    en.wikipedia.org/wiki/Bond_energy

    The bond energy for H 2 O is the average energy required to break each of the two O–H bonds in sequence: Although the two bonds are the equivalent in the original symmetric molecule, the bond-dissociation energy of an oxygen–hydrogen bond varies slightly depending on whether or not there is another hydrogen atom bonded to the oxygen atom.

  4. Halogen bond - Wikipedia

    en.wikipedia.org/wiki/Halogen_bond

    Most biological macromolecules contain few or no halogen atoms. But when molecules do contain halogens, halogen bonds are often essential to understanding molecular conformation. Computational studies suggest that known halogenated nucleobases form halogen bonds with oxygen, nitrogen, or sulfur in vitro.

  5. Bond cleavage - Wikipedia

    en.wikipedia.org/wiki/Bond_cleavage

    In homolytic cleavage, or homolysis, the two electrons in a cleaved covalent bond are divided equally between the products. This process is also known as homolytic fission or radical fission. The bond-dissociation energy of a bond is the amount of energy required to cleave the bond homolytically. This enthalpy change is one measure of bond ...

  6. Bond-dissociation energy - Wikipedia

    en.wikipedia.org/wiki/Bond-dissociation_energy

    The term bond-dissociation energy is similar to the related notion of bond-dissociation enthalpy (or bond enthalpy), which is sometimes used interchangeably.However, some authors make the distinction that the bond-dissociation energy (D 0) refers to the enthalpy change at 0 K, while the term bond-dissociation enthalpy is used for the enthalpy change at 298 K (unambiguously denoted DH° 298).

  7. Inductive effect - Wikipedia

    en.wikipedia.org/wiki/Inductive_effect

    In Organic chemistry, the inductive effect in a molecule is a local change in the electron density due to electron-withdrawing or electron-donating groups elsewhere in the molecule, resulting in a permanent dipole in a bond. [1] It is present in a σ (sigma) bond, unlike the electromeric effect which is present in a π (pi) bond.

  8. Halogen addition reaction - Wikipedia

    en.wikipedia.org/wiki/Halogen_addition_reaction

    As it attacks and forms a bond with one of the carbons, the bond between the first bromine atom and the other carbon atoms breaks, leaving each carbon atom with a halogen substituent. In this way the two halogens add in an anti addition fashion, and when the alkene is part of a cycle the dibromide adopts the trans configuration.

  9. Binding energy - Wikipedia

    en.wikipedia.org/wiki/Binding_energy

    This missing mass may be lost during the process of binding as energy in the form of heat or light, with the removed energy corresponding to the removed mass through Einstein's equation E = mc 2. In the process of binding, the constituents of the system might enter higher energy states of the nucleus/atom/molecule while retaining their mass ...

  1. Related searches bond enthalpy of halogens form when electrons are lost in order to move

    halogen bond structuremean bond enthalpy
    types of halogen bondspurple halogen bonds
    polymerized halogen bond