Search results
Results from the WOW.Com Content Network
function simple memory bounded A *-star (problem): path queue: set of nodes, ordered by f-cost; begin queue. insert (problem. root-node); while True do begin if queue. empty then return failure; //there is no solution that fits in the given memory node:= queue. begin (); // min-f-cost-node if problem. is-goal (node) then return success; s:= next-successor (node) if! problem. is-goal (s ...
In graph theory, the blossom algorithm is an algorithm for constructing maximum matchings on graphs. The algorithm was developed by Jack Edmonds in 1961, [ 1 ] and published in 1965. [ 2 ] Given a general graph G = ( V , E ) , the algorithm finds a matching M such that each vertex in V is incident with at most one edge in M and | M | is maximized.
The simple Sethi–Ullman algorithm works as follows (for a load/store architecture): . Traverse the abstract syntax tree in pre- or postorder . For every leaf node, if it is a non-constant left-child, assign a 1 (i.e. 1 register is needed to hold the variable/field/etc.), otherwise assign a 0 (it is a non-constant right child or constant leaf node (RHS of an operation – literals, values)).
The algorithm continues until a removed node (thus the node with the lowest f value out of all fringe nodes) is a goal node. [b] The f value of that goal is then also the cost of the shortest path, since h at the goal is zero in an admissible heuristic. The algorithm described so far only gives the length of the shortest path.
For example, the samples might be descriptions of mushrooms, and the labels could be whether or not the mushrooms are edible. The algorithm takes these previously labeled samples and uses them to induce a classifier. This classifier is a function that assigns labels to samples, including samples that have not been seen previously by the algorithm.
The NIST Dictionary of Algorithms and Data Structures [1] is a reference work maintained by the U.S. National Institute of Standards and Technology. It defines a large number of terms relating to algorithms and data structures. For algorithms and data structures not necessarily mentioned here, see list of algorithms and list of data structures.
The main problem of these algorithms is the possible presence of plateaus, which are regions of the space of assignments where no local move decreases cost. The second class of local search algorithm have been invented to solve this problem. They escape these plateaus by doing random moves, and are called randomized local search algorithms.
A flooding algorithm is an algorithm for distributing material to every part of a graph. The name derives from the concept of inundation by a flood. Flooding algorithms are used in computer networking and graphics. Flooding algorithms are also useful for solving many mathematical problems, including maze problems and many problems in graph theory.