enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hamiltonian path problem - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path_problem

    The problem of finding a Hamiltonian cycle or path is in FNP; the analogous decision problem is to test whether a Hamiltonian cycle or path exists. The directed and undirected Hamiltonian cycle problems were two of Karp's 21 NP-complete problems. They remain NP-complete even for special kinds of graphs, such as: bipartite graphs, [12]

  3. Hamiltonian path - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path

    A Hamiltonian cycle, Hamiltonian circuit, vertex tour or graph cycle is a cycle that visits each vertex exactly once. A graph that contains a Hamiltonian cycle is called a Hamiltonian graph . Similar notions may be defined for directed graphs , where each edge (arc) of a path or cycle can only be traced in a single direction (i.e., the vertices ...

  4. Ore's theorem - Wikipedia

    en.wikipedia.org/wiki/Ore's_theorem

    Illustration for the proof of Ore's theorem. In a graph with the Hamiltonian path v 1...v n but no Hamiltonian cycle, at most one of the two edges v 1 v i and v i − 1 v n (shown as blue dashed curves) can exist. For, if they both exist, then adding them to the path and removing the (red) edge v i − 1 v i would produce a Hamiltonian cycle.

  5. Cycle (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Cycle_(graph_theory)

    Such a cycle is known as a Hamiltonian cycle, and determining whether it exists is NP-complete. [8] Much research has been published concerning classes of graphs that can be guaranteed to contain Hamiltonian cycles; one example is Ore's theorem that a Hamiltonian cycle can always be found in a graph for which every non-adjacent pair of vertices ...

  6. Fleischner's theorem - Wikipedia

    en.wikipedia.org/wiki/Fleischner's_theorem

    A 2-vertex-connected graph, its square, and a Hamiltonian cycle in the square. In graph theory, a branch of mathematics, Fleischner's theorem gives a sufficient condition for a graph to contain a Hamiltonian cycle. It states that, if is a 2-vertex-connected graph, then the square of is Hamiltonian.

  7. Barnette's conjecture - Wikipedia

    en.wikipedia.org/wiki/Barnette's_conjecture

    Finally, a graph is Hamiltonian if there exists a cycle that passes through each of its vertices exactly once. Barnette's conjecture states that every cubic bipartite polyhedral graph is Hamiltonian. By Steinitz's theorem, a planar graph represents the edges and vertices of a convex polyhedron if and only if it is polyhedral.

  8. Lovász conjecture - Wikipedia

    en.wikipedia.org/wiki/Lovász_conjecture

    Another version of Lovász conjecture states that . Every finite connected vertex-transitive graph contains a Hamiltonian cycle except the five known counterexamples.. There are 5 known examples of vertex-transitive graphs with no Hamiltonian cycles (but with Hamiltonian paths): the complete graph, the Petersen graph, the Coxeter graph and two graphs derived from the Petersen and Coxeter ...

  9. Bottleneck traveling salesman problem - Wikipedia

    en.wikipedia.org/wiki/Bottleneck_traveling...

    The Bottleneck traveling salesman problem (bottleneck TSP) is a problem in discrete or combinatorial optimization.The problem is to find the Hamiltonian cycle (visiting each node exactly once) in a weighted graph which minimizes the weight of the highest-weight edge of the cycle. [1]