Search results
Results from the WOW.Com Content Network
kilogram meter squared (kg⋅m 2) intensity: watt per square meter (W/m 2) imaginary unit: unitless electric current: ampere (A) ^ Cartesian x-axis basis unit vector unitless current density: ampere per square meter (A/m 2) impulse: kilogram meter per second (kg⋅m/s)
In physics, there are equations in every field to relate physical quantities to each other and perform calculations. Entire handbooks of equations can only summarize most of the full subject, else are highly specialized within a certain field. Physics is derived of formulae only.
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
The energy–momentum relation is consistent with the familiar mass–energy relation in both its interpretations: E = mc 2 relates total energy E to the (total) relativistic mass m (alternatively denoted m rel or m tot), while E 0 = m 0 c 2 relates rest energy E 0 to (invariant) rest mass m 0. Unlike either of those equations, the energy ...
Substitution gives the non-homogeneous Maxwell equations in potential form. Many different choices of A and φ are consistent with given observable electric and magnetic fields E and B, so the potentials seem to contain more, (classically) unobservable information. The non uniqueness of the potentials is well understood, however.
Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2]
In classical mechanics, both the m 0 c 2 term and the high-speed corrections are ignored. The initial value of the energy is arbitrary, as only the change in energy can be measured and so the m 0 c 2 term is ignored in classical physics. While the higher-order terms become important at higher speeds, the Newtonian equation is a highly accurate ...
In particle physics, the electron mass (symbol: m e) is the mass of a stationary electron, also known as the invariant mass of the electron. It is one of the fundamental constants of physics . It has a value of about 9.109 × 10 −31 kilograms or about 5.486 × 10 −4 daltons , which has an energy-equivalent of about 8.187 × 10 −14 joules ...