enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Structured prediction - Wikipedia

    en.wikipedia.org/wiki/Structured_prediction

    An example application is the problem of translating a natural language sentence into a syntactic representation such as a parse tree.This can be seen as a structured prediction problem [2] in which the structured output domain is the set of all possible parse trees.

  3. Deep learning - Wikipedia

    en.wikipedia.org/wiki/Deep_learning

    Deep learning is a subset of machine learning that focuses on utilizing neural networks to perform tasks such as classification, regression, and representation learning.The field takes inspiration from biological neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data.

  4. Topological deep learning - Wikipedia

    en.wikipedia.org/wiki/Topological_Deep_Learning

    An example is the prediction of linkages among entities in hyperedges of a hypergraph. In practice, to perform the aforementioned tasks, deep learning models designed for specific topological spaces must be constructed and implemented. These models, known as topological neural networks, are tailored to operate effectively within these spaces.

  5. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    A convolutional neural network (CNN) is a regularized type of feed-forward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [1]

  6. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    For many years, sequence modelling and generation was done by using plain recurrent neural networks (RNNs). A well-cited early example was the Elman network (1990). In theory, the information from one token can propagate arbitrarily far down the sequence, but in practice the vanishing-gradient problem leaves the model's state at the end of a long sentence without precise, extractable ...

  7. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    This is because deep learning models are able to learn the style of an artist or musician from huge datasets and generate completely new artworks and music compositions. For instance, DALL-E is a deep neural network trained on 650 million pairs of images and texts across the internet that can create artworks based on text entered by the user. [246]

  8. Foundation model - Wikipedia

    en.wikipedia.org/wiki/Foundation_model

    A foundation model, also known as large X model (LxM), is a machine learning or deep learning model that is trained on vast datasets so it can be applied across a wide range of use cases. [1] Generative AI applications like Large Language Models are often examples of foundation models. [1]

  9. Link prediction - Wikipedia

    en.wikipedia.org/wiki/Link_prediction

    R-Models (RMLs) is a neural network model created to provide a deep learning approach to the link weight prediction problem. This model uses a node embedding technique that extracts node embeddings (knowledge of nodes) from the known links’ weights (relations between nodes) and uses this knowledge to predict the unknown links’ weights. [16]