Ads
related to: mathematical problem solving strategies examples
Search results
Results from the WOW.Com Content Network
How to Solve It suggests the following steps when solving a mathematical problem: . First, you have to understand the problem. [2]After understanding, make a plan. [3]Carry out the plan.
The satisfiability problem, also called the feasibility problem, is just the problem of finding any feasible solution at all without regard to objective value. This can be regarded as the special case of mathematical optimization where the objective value is the same for every solution, and thus any solution is optimal.
The iteration of such strategies over the course of solving a problem is the "problem-solving cycle". [ 30 ] Common steps in this cycle include recognizing the problem, defining it, developing a strategy to fix it, organizing knowledge and resources available, monitoring progress, and evaluating the effectiveness of the solution.
The secretary problem demonstrates a scenario involving optimal stopping theory [1] [2] that is studied extensively in the fields of applied probability, statistics, and decision theory. It is also known as the marriage problem, the sultan's dowry problem, the fussy suitor problem, the googol game, and the best choice problem.
This approach can be seen as one of the two basic approaches to problem-solving, contrasted with an approach using insight and theory. However, there are intermediate methods that, for example, use theory to guide the method, an approach known as guided empiricism. [citation needed]
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
"Adaptive reasoning refers to the capacity to think logically about the relationships among concepts and situations and to justify and ultimately prove the correctness of a mathematical procedure or assertion. Adaptive reasoning also includes reasoning based on pattern, analogy or metaphor." [1]
The use of multiple representations supports and requires tasks that involve decision-making and other problem-solving skills. [2] [3] [4] The choice of which representation to use, the task of making representations given other representations, and the understanding of how changes in one representation affect others are examples of such mathematically sophisticated activities.
Ads
related to: mathematical problem solving strategies examples