Search results
Results from the WOW.Com Content Network
The arrows indicate the hydrogen bonds that were identified in the figures. The relative direction of each strand is indicated by the "+" and "-" at the bottom of the table. Except for strands 1 and 6, all strands are antiparallel. The parallel interaction between strands 1 and 6 accounts for the different appearance of the hydrogen bonding ...
chemistry (Proportion of "active" molecules or atoms) Arrhenius number = Svante Arrhenius: chemistry (ratio of activation energy to thermal energy) [1] Atomic weight: M: chemistry (mass of one atom divided by the atomic mass constant, 1 Da) Bodenstein number: Bo or Bd
The mechanisms of inflation within these pocket universes could function in a variety of manners, such as slow-roll inflation, undergoing cycles of cosmological evolution, or resembling of the Galilean genesis or other 'emergent' universe scenarios. Lehners goes on to discuss which one of these types of universes we live in, and how that is ...
Quantum fluctuations drop the shapes to a lower energy level, creating a pocket with a set of laws different from that of the surrounding space. Quantum The quantum multiverse creates a new universe when a diversion in events occurs, as in the real-worlds variant of the many-worlds interpretation of quantum mechanics.
The Dictionary of Protein Secondary Structure, in short DSSP, is commonly used to describe the protein secondary structure with single letter codes. The secondary structure is assigned based on hydrogen bonding patterns as those initially proposed by Pauling et al. in 1951 (before any protein structure had ever been experimentally determined).
There is also evidence that parallel β-sheet may be more stable since small amyloidogenic sequences appear to generally aggregate into β-sheet fibrils composed of primarily parallel β-sheet strands, where one would expect anti-parallel fibrils if anti-parallel were more stable. In parallel β-sheet structure, if two atoms C α i and C α
The Feret diameter or Feret's diameter is a measure of an object's size along a specified direction. In general, it can be defined as the distance between the two parallel planes restricting the object perpendicular to that direction. It is therefore also called the caliper diameter, referring to the measurement of the object size with a caliper.
Each base pair, A = T vs. G ≡ C, takes up roughly the same space, thereby enabling a twisted DNA double helix formation without any spatial distortions. Hydrogen bonding between the nucleobases also stabilizes the DNA double helix. [3]