Search results
Results from the WOW.Com Content Network
One area of application of Pitzer parameters is to describe the ionic strength variation of equilibrium constants measured as concentration quotients. Both SIT and Pitzer parameters have been used in this context, For example, both sets of parameters were calculated for some uranium complexes and were found to account equally well for the ionic ...
However, when the ionic strength is changed the measured equilibrium constant will also change, so there is a need to estimate individual (single ion) activity coefficients. Debye–Hückel theory provides a means to do this, but it is accurate only at very low concentrations. Hence the need for an extension to Debye–Hückel theory.
Pourbaix diagram of iron. [1] The Y axis corresponds to voltage potential. In electrochemistry, and more generally in solution chemistry, a Pourbaix diagram, also known as a potential/pH diagram, E H –pH diagram or a pE/pH diagram, is a plot of possible thermodynamically stable phases (i.e., at chemical equilibrium) of an aqueous electrochemical system.
Model selection; The value of the equilibrium constant for the formation of a 1:1 complex, such as a host-guest species, may be calculated with a dedicated spreadsheet application, Bindfit: [4] In this case step 2 can be performed with a non-iterative procedure and the pre-programmed routine Solver can be used for step 3.
An ICE table or RICE box or RICE chart is a tabular system of keeping track of changing concentrations in an equilibrium reaction. ICE stands for initial, change, equilibrium . It is used in chemistry to keep track of the changes in amount of substance of the reactants and also organize a set of conditions that one wants to solve with. [ 1 ]
where is the average number of surfactant monomers in solution that associate into a micelle, commonly denoted the aggregation number. The equilibrium is characterized by an equilibrium constant defined by = [] / [], where [] and [] are the concentrations of micelles and free surfactant monomers, respectively.
A large number of computer programs for the calculation of equilibrium species concentrations have been published. Most of them can handle much more complicated equilibria than acid-base equilibria in solution. For details concerning general purpose programs see computer programs for calculating species concentrations in chemical equilibrium.
The molar ionic strength, I, of a solution is a function of the concentration of all ions present in that solution. [3]= = where one half is because we are including both cations and anions, c i is the molar concentration of ion i (M, mol/L), z i is the charge number of that ion, and the sum is taken over all ions in the solution.