Search results
Results from the WOW.Com Content Network
A constant coefficient, also known as constant term or simply constant, is a quantity either implicitly attached to the zeroth power of a variable or not attached to other variables in an expression; for example, the constant coefficients of the expressions above are the number 3 and the parameter c, involved in 3=c ⋅ x 0.
A term with no indeterminates and a polynomial with no indeterminates are called, respectively, a constant term and a constant polynomial. [b] The degree of a constant term and of a nonzero constant polynomial is 0. The degree of the zero polynomial 0 (which has no terms at all) is generally treated as not defined (but see below).
In particular, the constant term will always be the lowest degree term of the polynomial. This also applies to multivariate polynomials. For example, the polynomial + + + has a constant term of −4, which can be considered to be the coefficient of , where the variables are eliminated by being exponentiated to 0 (any non-zero number ...
The numbers a, b, and c are the coefficients of the equation and may be distinguished by respectively calling them, the quadratic coefficient, the linear coefficient and the constant coefficient or free term. [2] The values of x that satisfy the equation are called solutions of the equation, and roots or zeros of the quadratic function on its ...
In this example a, b and c are coefficients of the polynomial. Since c occurs in a term that does not involve x, it is called the constant term of the polynomial and can be thought of as the coefficient of x 0. More generally, any polynomial term or expression of degree zero (no variable) is a constant. [5]: 18
A coefficient is a numerical value, or letter representing a numerical constant, that multiplies a variable (the operator is omitted). A term is an addend or a summand, a group of coefficients, variables, constants and exponents that may be separated from the other terms by the plus and minus operators. [9] Letters represent variables and ...
In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.
The rule states that if the nonzero terms of a single-variable polynomial with real coefficients are ordered by descending variable exponent, then the number of positive roots of the polynomial is either equal to the number of sign changes between consecutive (nonzero) coefficients, or is less than it by an even number.