Search results
Results from the WOW.Com Content Network
The rhombic dodecahedron forms the maximal cross-section of a 24-cell, and also forms the hull of its vertex-first parallel projection into three dimensions. The rhombic dodecahedron can be decomposed into six congruent (but non-regular) square dipyramids meeting at a single vertex in the center; these form the images of six pairs of the 24 ...
The rhombic dodecahedron can be seen as a degenerate pyritohedron where the 6 special edges have been reduced to zero length, reducing the pentagons into rhombic faces. The rhombic dodecahedron has several stellations, the first of which is also a parallelohedral spacefiller. Another important rhombic dodecahedron, the Bilinski dodecahedron ...
Rhombic hexahedron (Dual of tetratetrahedron) — V(3.3.3.3) arccos (0) = π / 2 90° Rhombic dodecahedron (Dual of cuboctahedron) — V(3.4.3.4) arccos (- 1 / 2 ) = 2 π / 3 120° Rhombic triacontahedron (Dual of icosidodecahedron) — V(3.5.3.5) arccos (- √ 5 +1 / 4 ) = 4 π / 5 144° Medial rhombic ...
Therefore, the circumradius of this rhombicosidodecahedron is the common distance of these points from the origin, namely √ φ 6 +2 = √ 8φ+7 for edge length 2. For unit edge length, R must be halved, giving R = √ 8φ+7 / 2 = √ 11+4 √ 5 / 2 ≈ 2.233.
If the edge length of a regular dodecahedron is , the radius of a circumscribed sphere (one that touches the regular dodecahedron at all vertices), the radius of an inscribed sphere (tangent to each of the regular dodecahedron's faces), and the midradius (one that touches the middle of each edge) are: [21] =, =, =. Given a regular dodecahedron ...
The rhombic dodecahedron is a convex polyhedron with 12 congruent rhombi as its faces. The rhombic triacontahedron is a convex polyhedron with 30 golden rhombi (rhombi whose diagonals are in the golden ratio) as its faces. The great rhombic triacontahedron is a nonconvex isohedral, isotoxal polyhedron with 30 intersecting rhombic faces.
The vertices with the obtuse rhombic face angles have 4 cells. The vertices with the acute rhombic face angles have 6 cells. The rhombic dodecahedron can be twisted on one of its hexagonal cross-sections to form a trapezo-rhombic dodecahedron, which is the cell of a somewhat similar tessellation, the Voronoi diagram of hexagonal close-packing.
In geometry, a diminished rhombic dodecahedron is a rhombic dodecahedron with one or more vertices removed. This article describes diminishing one 4-valence vertex. This diminishment creates one new square face while 4 rhombic faces are reduced to triangles. It has 13 vertices, 24 edges, and 13 faces. It has C 4v symmetry, order 8.