Search results
Results from the WOW.Com Content Network
The following table lists the Van der Waals constants (from the Van der Waals equation) for a number of common gases and volatile liquids. [ 1 ] To convert from L 2 b a r / m o l 2 {\displaystyle \mathrm {L^{2}bar/mol^{2}} } to L 2 k P a / m o l 2 {\displaystyle \mathrm {L^{2}kPa/mol^{2}} } , multiply by 100.
The expansion ratio of a liquefied and cryogenic substance is the volume of a given amount of that substance in liquid form compared to the volume of the same amount of substance in gaseous form, at room temperature and normal atmospheric pressure.
An inert gas, such as Argon, is often used to quickly cool the treated metals back to non-metallurgical levels (below 400 °F [200 °C]) after the desired process in the furnace. [2] This inert gas can be pressurized to two times atmosphere or more, then circulated through the hot zone area to pick up heat before passing through a heat ...
Other inert gases, e.g. argon or helium may be used. Nitrogen and carbon dioxide are unsuitable purge gases in some applications, as these gases may undergo chemical reaction with fine dusts of certain light metals. Because an inert purge gas is used, the purge procedure may (erroneously) be referred to as inerting in everyday language. This ...
Liquefaction of gases is physical conversion of a gas into a liquid state (condensation). The liquefaction of gases is a complicated process that uses various compressions and expansions to achieve high pressures and very low temperatures, using, for example, turboexpanders .
A cryogenic gas plant is an industrial facility that creates molecular oxygen, molecular nitrogen, argon, krypton, helium, and xenon at relatively high purity. [1] As air is made up of nitrogen, the most common gas in the atmosphere, at 78%, with oxygen at 19%, and argon at 1%, with trace gasses making up the rest, cryogenic gas plants separate air inside a distillation column at cryogenic ...
The term “industrial gases” [32] is sometimes narrowly defined as just the major gases sold, which are: nitrogen, oxygen, carbon dioxide, argon, hydrogen, acetylene and helium. [33] Many names are given to gases outside of this main list by the different industrial gas companies, but generally the gases fall into the categories "specialty ...
The cold energy of LNG can be used for cooling the exhaust fluid of the gas turbine which is working in closed joule cycle with Argon gas as fluid. Thus near 100% conversion efficiency to electricity is achieved for the LNG/natural gas consumed by the gas turbine as its exhaust heat is fully used/absorbed for the gasification of LNG.