Search results
Results from the WOW.Com Content Network
In number theory, a perfect number is a positive integer that is equal to the sum of its positive proper divisors, that is, divisors excluding the number itself. For instance, 6 has proper divisors 1, 2 and 3, and 1 + 2 + 3 = 6, so 6 is a perfect number. The next perfect number is 28, since 1 + 2 + 4 + 7 + 14 = 28.
Perfect numbers are natural numbers that equal the sum of their positive proper divisors, which are divisors excluding the number itself. So, 6 is a perfect number because the proper divisors of 6 are 1, 2, and 3, and 1 + 2 + 3 = 6. [2] [4] Euclid proved c. 300 BCE that every prime expressed as M p = 2 p − 1 has a corresponding perfect number ...
In mathematics, a multiply perfect number (also called multiperfect number or pluperfect number) is a generalization of a perfect number. For a given natural number k , a number n is called k -perfect (or k -fold perfect) if the sum of all positive divisors of n (the divisor function , σ ( n )) is equal to kn ; a number is thus perfect if and ...
A unitary perfect number is an integer which is the sum of its positive proper unitary divisors, not including the number itself. (A divisor d of a number n is a unitary divisor if d and n/d share no common factors). The number 6 is the only number that is both a perfect number and a unitary perfect number.
A perfect number is a natural number that equals the sum of its proper divisors, the numbers that are less than it and divide it evenly (with remainder zero). For instance, the proper divisors of 6 are 1, 2, and 3, which sum to 6, so 6 is perfect. A Mersenne prime is a prime number of the form M p = 2 p − 1, one less than a power of two.
Divisor function σ 0 (n) up to n = 250 Sigma function σ 1 (n) up to n = 250 Sum of the squares of divisors, σ 2 (n), up to n = 250 Sum of cubes of divisors, σ 3 (n) up to n = 250. In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer.
It is also the first number that is the sum of its proper divisors, making it the smallest perfect number. [2] 6 is the first unitary perfect number, since it is the sum of its positive proper unitary divisors, without including itself. Only five such numbers are known to exist. [3] 6 is the largest of the four all-Harshad numbers. [4]
T(n) is the sum of the first n triangular numbers, with T(0) = 0 (empty sum). A000292: Square pyramidal numbers: 0, 1, 5, 14, 30, 55, 91, 140, 204, 285, ... n(n + 1)(2n + 1) / 6 : The number of stacked spheres in a pyramid with a square base. A000330: Cube numbers n 3: 0, 1, 8, 27, 64, 125, 216, 343, 512, 729, ... n 3 = n × n × n ...