Search results
Results from the WOW.Com Content Network
Abstractive summarization methods generate new text that did not exist in the original text. [12] This has been applied mainly for text. Abstractive methods build an internal semantic representation of the original content (often called a language model), and then use this representation to create a summary that is closer to what a human might express.
It is a general-purpose learner and its ability to perform the various tasks was a consequence of its general ability to accurately predict the next item in a sequence, [2] [7] which enabled it to translate texts, answer questions about a topic from a text, summarize passages from a larger text, [7] and generate text output on a level sometimes ...
ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, [1] is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced ...
T5 (Text-to-Text Transfer Transformer) is a series of large language models developed by Google AI introduced in 2019. [ 1 ] [ 2 ] Like the original Transformer model, [ 3 ] T5 models are encoder-decoder Transformers , where the encoder processes the input text, and the decoder generates the output text.
An example of an AI-generated conversation by NotebookLM (January 2025). NotebookLM (Google NotebookLM) is a research and note-taking online tool developed by Google Labs that uses artificial intelligence (AI), specifically Google Gemini, to assist users in interacting with their documents.
In mathematics and physics, the term generator or generating set may refer to any of a number of related concepts. The underlying concept in each case is that of a smaller set of objects, together with a set of operations that can be applied to it, that result in the creation of a larger collection of objects, called the generated set .
Multi-document summarization is an automatic procedure aimed at extraction of information from multiple texts written about the same topic. The resulting summary report allows individual users, such as professional information consumers, to quickly familiarize themselves with information contained in a large cluster of documents.
While a monkey is used as a mechanism for the thought experiment, it would be unlikely to ever write Hamlet, according to researchers.. The infinite monkey theorem states that a monkey hitting keys at random on a typewriter keyboard for an infinite amount of time will almost surely type any given text, including the complete works of William Shakespeare.