Search results
Results from the WOW.Com Content Network
To construct the name of a polygon with more than 20 and fewer than 100 edges, combine the prefixes as follows. ... List of n-gon names [4] [5] Sides Names 1: henagon ...
There are 5 subgroup dihedral symmetries: (Dih 10, Dih 5), and (Dih 4, Dih 2, and Dih 1), and 6 cyclic group symmetries: (Z 20, Z 10, Z 5), and (Z 4, Z 2, Z 1). These 10 symmetries can be seen in 16 distinct symmetries on the icosagon, a larger number because the lines of reflections can either pass through vertices or edges.
A polytope is a geometric object with flat sides, which exists in any general number of dimensions. The following list of polygons, polyhedra and polytopes gives the names of various classes of polytopes and lists some specific examples.
These lower symmetries allow geometric distortions from 20 equilateral triangular faces, instead having 8 equilateral triangles and 12 congruent isosceles triangles. These symmetries offer Coxeter diagrams : and respectively, each representing the lower symmetry to the regular icosahedron , (*532), [5,3] icosahedral symmetry of order 120.
The 5 Platonic solids are called a tetrahedron, hexahedron, octahedron, dodecahedron and icosahedron with 4, 6, 8, 12, and 20 sides respectively. The regular hexahedron is a cube . Table of polyhedra
Megagon - 1,000,000 sides; Star polygon – there are multiple types of stars Pentagram - star polygon with 5 sides; Hexagram – star polygon with 6 sides Star of David (example) Heptagram – star polygon with 7 sides; Octagram – star polygon with 8 sides Star of Lakshmi (example) Enneagram - star polygon with 9 sides; Decagram - star ...
where φ = 1 + √ 5 / 2 is the golden ratio. Therefore, the circumradius of this rhombicosidodecahedron is the common distance of these points from the origin, namely √ φ 6 +2 = √ 8φ+7 for edge length 2. For unit edge length, R must be halved, giving R = √ 8φ+7 / 2 = √ 11+4 √ 5 / 2 ≈ 2.233.
Polygon names and miscellaneous properties; Name Sides Properties monogon: 1: Not generally recognised as a polygon, [18] although some disciplines such as graph theory sometimes use the term. [19] digon: 2: Not generally recognised as a polygon in the Euclidean plane, although it can exist as a spherical polygon. [20] triangle (or trigon) 3