Search results
Results from the WOW.Com Content Network
Fates of pyruvate under anaerobic conditions: Pyruvate is the terminal electron acceptor in lactic acid fermentation. When sufficient oxygen is not present in the muscle cells for further oxidation of pyruvate and NADH produced in glycolysis, NAD+ is regenerated from NADH by reduction of pyruvate to lactate. [4] Lactate is converted to pyruvate ...
In aerobic respiration, the pyruvate generated from glycolysis is converted to acetyl-CoA. This is then broken down via the TCA cycle and electron transport chain. Anaerobic respiration differs from aerobic respiration in that it uses an electron acceptor other than oxygen in the electron transport chain
The liver in mammals gets rid of this excess lactate by transforming it back into pyruvate under aerobic conditions; see Cori cycle. Fermentation of pyruvate to lactate is sometimes also called "anaerobic glycolysis", however, glycolysis ends with the production of pyruvate regardless of the presence or absence of oxygen.
It is an anaerobic fermentation reaction that occurs in some bacteria and animal cells, such as muscle cells. [1] [2] [3] [page needed] If oxygen is present in the cell, many organisms will bypass fermentation and undergo cellular respiration; however, facultative anaerobic organisms will both ferment and undergo respiration in the presence of ...
If oxygen is not present, then ATP production is restricted to anaerobic respiration. The location where glycolysis, aerobic or anaerobic, occurs is in the cytosol of the cell. In glycolysis, a six-carbon glucose molecule is split into two three-carbon molecules called pyruvate. These carbon molecules are oxidized into NADH and ATP. For the ...
Cellular respiration is the process by which biological fuels are oxidised in the presence of an inorganic electron acceptor, such as oxygen, to produce large amounts of energy and drive the bulk production of ATP. Anaerobic respiration is used by microorganisms, either bacteria or archaea, in which neither oxygen (aerobic respiration) nor ...
Pyruvate from glycolysis is converted by fermentation to lactate using the enzyme lactate dehydrogenase and the coenzyme NADH in lactate fermentation, or to acetaldehyde (with the enzyme pyruvate decarboxylase) and then to ethanol in alcoholic fermentation. [citation needed] Pyruvate is a key intersection in the network of metabolic pathways.
Under anaerobic conditions, a glycolysis reaction takes place where glucose is converted into pyruvate: glucose → 2 pyruvate There is a net production of 2 ATP and 2 NADH molecules per molecule of glucose converted. ATP is generated by substrate-level phosphorylation.