enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Causal graph - Wikipedia

    en.wikipedia.org/wiki/Causal_graph

    These models were initially confined to linear equations with fixed parameters. Modern developments have extended graphical models to non-parametric analysis, and thus achieved a generality and flexibility that has transformed causal analysis in computer science, epidemiology, [19] and social science. [20]

  3. Collider (statistics) - Wikipedia

    en.wikipedia.org/wiki/Collider_(statistics)

    In statistics and causal graphs, a variable is a collider when it is causally influenced by two or more variables. The name "collider" reflects the fact that in graphical models, the arrow heads from variables that lead into the collider appear to "collide" on the node that is the collider. [1] They are sometimes also referred to as inverted ...

  4. Causal model - Wikipedia

    en.wikipedia.org/wiki/Causal_model

    Judea Pearl defines a causal model as an ordered triple ,, , where U is a set of exogenous variables whose values are determined by factors outside the model; V is a set of endogenous variables whose values are determined by factors within the model; and E is a set of structural equations that express the value of each endogenous variable as a function of the values of the other variables in U ...

  5. Graphical model - Wikipedia

    en.wikipedia.org/wiki/Graphical_model

    A graphical model or probabilistic graphical model (PGM) or structured probabilistic model is a probabilistic model for which a graph expresses the conditional dependence structure between random variables. They are commonly used in probability theory, statistics—particularly Bayesian statistics—and machine learning.

  6. Causal map - Wikipedia

    en.wikipedia.org/wiki/Causal_map

    Causal mapping is the process of constructing, summarising and drawing inferences from a causal map, and more broadly can refer to sets of techniques for doing this. While one group of such methods is actually called “causal mapping”, there are many similar methods which go by a wide variety of names.

  7. Bayesian network - Wikipedia

    en.wikipedia.org/wiki/Bayesian_network

    A Bayesian network (also known as a Bayes network, Bayes net, belief network, or decision network) is a probabilistic graphical model that represents a set of variables and their conditional dependencies via a directed acyclic graph (DAG). [1] While it is one of several forms of causal notation, causal networks are special cases of Bayesian ...

  8. Causal analysis - Wikipedia

    en.wikipedia.org/wiki/Causal_analysis

    Causal analysis is the field of experimental design and statistics pertaining to establishing cause and effect. [1] Typically it involves establishing four elements: correlation, sequence in time (that is, causes must occur before their proposed effect), a plausible physical or information-theoretical mechanism for an observed effect to follow from a possible cause, and eliminating the ...

  9. Convergent cross mapping - Wikipedia

    en.wikipedia.org/wiki/Convergent_cross_mapping

    Convergent cross mapping (CCM) is a statistical test for a cause-and-effect relationship between two variables that, like the Granger causality test, seeks to resolve the problem that correlation does not imply causation. [1]