Search results
Results from the WOW.Com Content Network
Molecular weight (M.W.) (for molecular compounds) and formula weight (F.W.) (for non-molecular compounds), are older terms for what is now more correctly called the relative molar mass (M r). [8] This is a dimensionless quantity (i.e., a pure number, without units) equal to the molar mass divided by the molar mass constant .
The mass-average molecular mass, M w, is also related to the fractional monomer conversion, p, in step-growth polymerization (for the simplest case of linear polymers formed from two monomers in equimolar quantities) as per Carothers' equation: ¯ = + ¯ = (+), where M o is the molecular mass of the repeating unit.
For atoms or molecules of a well-defined molar mass M (in kg/mol), the number density can sometimes be expressed in terms of their mass density ρ m (in kg/m 3) as =. Note that the ratio M/N A is the mass of a single atom or molecule in kg.
The molecular mass and relative molecular mass are distinct from but related to the molar mass. The molar mass is defined as the mass of a given substance divided by the amount of the substance , and is expressed in grams per mol (g/mol).
The conversion to mass concentration ... The density of water is approximately 1000 g/L and its molar mass is 18.02 g/mol (or 1/18.02 = 0.055 mol/g). Therefore, the ...
The interest stems from that accurate measurements of the unit cell volume, atomic weight and mass density of a pure crystalline solid provide a direct determination of the Avogadro constant. [3] The CODATA recommended value for the molar volume of silicon is 1.205 883 199 (60) × 10 −5 m 3 ⋅mol −1, with a relative standard uncertainty of ...
A United States Navy Aviation boatswain's mate tests the specific gravity of JP-5 fuel. Relative density, also called specific gravity, [1] [2] is a dimensionless quantity defined as the ratio of the density (mass of a unit volume) of a substance to the density of a given reference material.
In chemistry, the mass concentration ρ i (or γ i) is defined as the mass of a constituent m i divided by the volume of the mixture V. [1]= For a pure chemical the mass concentration equals its density (mass divided by volume); thus the mass concentration of a component in a mixture can be called the density of a component in a mixture.