Search results
Results from the WOW.Com Content Network
In edge dislocations, the Burgers vector and dislocation line are perpendicular to one another. In screw dislocations, they are parallel. [4] The Burgers vector is significant in determining the yield strength of a material by affecting solute hardening, precipitation hardening and work hardening. The Burgers vector plays an important role in ...
In materials science, a partial dislocation is a decomposed form of dislocation that occurs within a crystalline material. An extended dislocation is a dislocation that has dissociated into a pair of partial dislocations. The vector sum of the Burgers vectors of the partial dislocations is the Burgers vector of the extended dislocation.
The dislocation has two properties, a line direction, which is the direction running along the bottom of the extra half plane, and the Burgers vector which describes the magnitude and direction of distortion to the lattice. In an edge dislocation, the Burgers vector is perpendicular to the line direction.
Edge dislocations have the direction of the Burgers vector perpendicular to the dislocation line, while screw dislocations have the direction of the Burgers vector parallel to the dislocation line. The type of dislocations generated largely depends on the direction of the applied stress, temperature, and other factors.
This repulsion is a consequence of stress fields around each partial dislocation affecting the other. The force of repulsion depends on factors such as shear modulus, burger’s vector, Poisson’s ratio, and distance between the dislocations. [4] As the partial dislocations repel, stacking fault is created in between.
The screw component of a mixed dislocation loop can move to another slip plane, called the cross-slip plane. Here the Burgers vector is along the intersection of the planes. In materials science, cross slip is the process by which a screw dislocation moves from one slip plane to another due to local stresses. It allows non-planar movement of ...
For a three dimension dislocations in a crystal, considering a region where the effects of dislocations is averaged (i.e. the crystal is large enough). The dislocations can be determined by Burgers vectors. If a Burgers circuit of the unit area normal to the unit vector has a Burgers vector
If a shear stress is exerted on the slip plane then a force =, where b is the Burgers vector of the dislocation and x is the distance between the pinning sites A and B, is exerted on the dislocation line as a result of the shear stress.