Search results
Results from the WOW.Com Content Network
Noise figure (NF) and noise factor (F) are figures of merit that indicate degradation of the signal-to-noise ratio (SNR) that is caused by components in a signal chain.These figures of merit are used to evaluate the performance of an amplifier or a radio receiver, with lower values indicating better performance.
Friis's formula is used to calculate the total noise factor of a cascade of stages, each with its own noise factor and power gain (assuming that the impedances are matched at each stage). The total noise factor can then be used to calculate the total noise figure. The total noise factor is given as
The noise factor (a linear term) is more often expressed as the noise figure (in decibels) using the conversion: = The noise figure can also be seen as the decrease in signal-to-noise ratio (SNR) caused by passing a signal through a system if the original signal had a noise temperature of 290 K. This is a common way of expressing the noise ...
In the above formula, P is measured in units of power, such as watts (W) or milliwatts (mW), and the signal-to-noise ratio is a pure number. However, when the signal and noise are measured in volts (V) or amperes (A), which are measures of amplitude, [note 1] they must first be squared to obtain a quantity proportional to power, as shown below:
To determine the noise figure of an amplifier one uses a noise diode at the input to the amplifier and determines the output noise Y with the diode switched on and off. Knowing both Y and the ENR, one can then determine the amount of noise contributed by the amplifier and hence can calculate the noise figure of the amplifier.
Thermal noise in an ideal resistor is approximately white, meaning that its power spectral density is nearly constant throughout the frequency spectrum (Figure 2). When limited to a finite bandwidth and viewed in the time domain (as sketched in Figure 1), thermal noise has a nearly Gaussian amplitude distribution. [1]
In telecommunications, effective input noise temperature is the source noise temperature in a two-port network or amplifier that will result in the same output noise power, when connected to a noise-free network or amplifier, as that of the actual network or amplifier connected to a noise-free source.
The Schottky formula assumes independent arrivals. Vacuum tubes exhibit shot noise because the electrons randomly leave the cathode and arrive at the anode (plate). A tube may not exhibit the full shot noise effect: the presence of a space charge tends to smooth out the arrival times (and thus reduce the randomness of the current).