enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Farad - Wikipedia

    en.wikipedia.org/wiki/Farad

    Values of capacitors are usually specified in terms of SI prefixes of farads (F), microfarads (μF), nanofarads (nF) and picofarads (pF). [9] The millifarad (mF) is rarely used in practice; a capacitance of 4.7 mF (0.0047 F), for example, is instead written as 4 700 μF. The nanofarad (nF) is used more often in Europe than in the United States ...

  3. RC time constant - Wikipedia

    en.wikipedia.org/wiki/RC_time_constant

    It is the time required to charge the capacitor, through the resistor, from an initial charge voltage of zero to approximately 63.2% of the value of an applied DC voltage, or to discharge the capacitor through the same resistor to approximately 36.8% of its initial charge voltage.

  4. Capacitance - Wikipedia

    en.wikipedia.org/wiki/Capacitance

    The energy (measured in joules) stored in a capacitor is equal to the work required to push the charges into the capacitor, i.e. to charge it. Consider a capacitor of capacitance C, holding a charge +q on one plate and −q on the other.

  5. Capacitor - Wikipedia

    en.wikipedia.org/wiki/Capacitor

    The equivalent series resistance (ESR) is the amount of internal series resistance one would add to a perfect capacitor to model this. Some types of capacitors , primarily tantalum and aluminum electrolytic capacitors , as well as some film capacitors have a specified rating value for maximum ripple current.

  6. RKM code - Wikipedia

    en.wikipedia.org/wiki/RKM_code

    For capacitances following the (E3, E6, E12 or) E24 series of preferred values, the former ANSI/EIA-198-D:1991, ANSI/EIA-198-1-E:1998 and ANSI/EIA-198-1-F:2002 as well as the amendment IEC 60062:2016/AMD1:2019 to IEC 60062 define a special two-character marking code for capacitors for very small parts which leave no room to print any longer ...

  7. Time constant - Wikipedia

    en.wikipedia.org/wiki/Time_constant

    where R is the resistance (in ohms) and L is the inductance (in henrys). Similarly, in an RC circuit composed of a single resistor and capacitor, the time constant (in seconds) is: = where R is the resistance (in ohms) and C is the capacitance (in farads).

  8. Telegrapher's equations - Wikipedia

    en.wikipedia.org/wiki/Telegrapher's_equations

    The capacitance between the two conductors is represented by a shunt capacitor (farads per unit length). The conductance G {\displaystyle G} of the dielectric material separating the two conductors is represented by a shunt resistor between the signal wire and the return wire ( siemens per unit length).

  9. Electric susceptibility - Wikipedia

    en.wikipedia.org/wiki/Electric_susceptibility

    In many materials the polarizability starts to saturate at high values of electric field. This saturation can be modelled by a nonlinear susceptibility . These susceptibilities are important in nonlinear optics and lead to effects such as second-harmonic generation (such as used to convert infrared light into visible light, in green laser ...