Search results
Results from the WOW.Com Content Network
To achieve optimal surface speed and cutting conditions, burrs are rapidly rotated at high speeds, often in the range of thousands or tens of thousands of RPM, which is typically the maximum speed supported by a given spindle. The cutters depicted in the image, being made of tungsten carbide, can withstand and operate at these elevated speeds.
The free running speed of 1:5 gear ratio electric handpiece is the same as its cutting speed; thus, 40,000 motor speed x 5 = 200,000 rpm burr speed. The electrical motor maintains the 200,000 rpm speed and provides consistent power, so torque will be maintained, depending on the electronic control parameters.
Cutting speed may be defined as the rate at the workpiece surface, irrespective of the machining operation used. A cutting speed for mild steel of 100 ft/min is the same whether it is the speed of the cutter passing over the workpiece, such as in a turning operation, or the speed of the cutter moving past a workpiece, such as in a milling operation.
Tungsten carbide (chemical formula: W C) is a chemical compound (specifically, a carbide) containing equal parts of tungsten and carbon atoms. In its most basic form, tungsten carbide is a fine gray powder, but it can be pressed and formed into shapes through sintering [7] for use in industrial machinery, engineering facilities, [8] molding blocks, [9] cutting tools, chisels, abrasives, armor ...
A tungsten carbide cutter is needed, but the complex shape of a forstner bit is difficult to manufacture in carbide, so this special drill bit with a simpler shape is commonly used. It has cutting edges of tungsten carbide brazed to a steel body; a center spur keeps the bit from wandering.
Silicon carbide grit is commonly used, and water is a universal lubricant. The barrel is then placed upon slowly rotating rails so that it rotates. The optimal speed of rotation depends on the size of the tumbler barrel and materials involved. Vibratory finishing process can be used instead.
Broaching machines are relatively simple as they only have to move the broach in a linear motion at a predetermined speed and provide a means for handling the broach automatically. Most machines are hydraulic, but a few specialty machines are mechanically driven. The machines are distinguished by whether their motion is horizontal or vertical.
Electrochemical machining (ECM) diagram. 1: Pump 2: Anode (workpiece) 3: Cathode (tool) 4: Electric current 5: Electrolyte 6: Electrons 7: Metal hydroxide. Electrochemical machining (ECM) is a method of removing metal by an electrochemical process.