Search results
Results from the WOW.Com Content Network
A fixed source calculation involves imposing a known neutron source on a medium and determining the resulting neutron distribution throughout the problem. This type of problem is particularly useful for shielding calculations, where a designer would like to minimize the neutron dose outside of a shield while using the least amount of shielding ...
2 Equations. Toggle Equations subsection. ... m n = neutron rest mass ... University Physics – With Modern Physics (12th ed.). Addison-Wesley (Pearson International).
Additionally, there is also a shielding effect that occurs between sublevels within the same principal energy level. An electron in the s-sublevel is capable of shielding electrons in the p-sublevel of the same principal energy level. The size of the shielding effect is difficult to calculate precisely due to effects from quantum mechanics.
In the case of time-independent monochromatic radiation in an elastically scattering medium, the RTE is [1] (,) = (,) + (,) (, ′) ′where the first term on the RHS is the contribution of emission, the second term the contribution of absorption and the last term is the contribution from scattering in the medium.
In atomic physics, the effective nuclear charge of an electron in a multi-electron atom or ion is the number of elementary charges an electron experiences by the nucleus. It is denoted by Z eff . The term "effective" is used because the shielding effect of negatively charged electrons prevent higher energy electrons from experiencing the full ...
In atomic physics, a germane effect exists for atoms with more than one electron shell: the shielding effect. In plasma physics, electric-field screening is also called Debye screening or shielding. It manifests itself on macroscopic scales by a sheath (Debye sheath) next to a material with which the plasma is in contact.
The "Six-factor formula" is the neutron life-cycle balance equation, which includes six separate factors, the product of which is equal to the ratio of the number of neutrons in any generation to that of the previous one; this parameter is called the effective multiplication factor k, also denoted by K eff, where k = Є L f ρ L th f η, where ...
The code was finalized in December 1947. The first calculations were run in April/May 1948 on ENIAC. While waiting for ENIAC to be physically relocated, Enrico Fermi invented a mechanical device called FERMIAC [7] to trace neutron movements through fissionable materials by the Monte Carlo method. Monte Carlo methods for particle transport have ...