Search results
Results from the WOW.Com Content Network
3D rendering of centrioles showing the triplets. In cell biology a centriole is a cylindrical organelle composed mainly of a protein called tubulin. [1] Centrioles are found in most eukaryotic cells, but are not present in conifers (), flowering plants (angiosperms) and most fungi, and are only present in the male gametes of charophytes, bryophytes, seedless vascular plants, cycads, and Ginkgo.
However, the two centrioles are of different ages. This is because one centriole originates from the mother cell while the other is replicated from the mother centriole during the cell cycle. It is possible to distinguish between the two preexisting centrioles because the mother and daughter centriole differ in both shape and function. [5]
In 1903, Nikolai K. Koltsov proposed that the shape of cells was determined by a network of tubules that he termed the cytoskeleton. The concept of a protein mosaic that dynamically coordinated cytoplasmic biochemistry was proposed by Rudolph Peters in 1929 [12] while the term (cytosquelette, in French) was first introduced by French embryologist Paul Wintrebert in 1931.
The following other wikis use this file: Usage on ar.wikipedia.org مريكز; Usage on en.wikibooks.org Biology, Answering the Big Questions of Life/organelles
Centrioles: Function to produce spindle fibers which are used to separate chromosomes during cell division. Eukaryotic cells may also be composed of the following molecular components: Chromatin : This makes up chromosomes and is a mixture of DNA with various proteins.
The microtubule-organizing center (MTOC) is a structure found in eukaryotic cells from which microtubules emerge. MTOCs have two main functions: the organization of eukaryotic flagella and cilia and the organization of the mitotic and meiotic spindle apparatus, which separate the chromosomes during cell division.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
This diagram depicts the organization of a typical mitotic spindle found in animal cells. Chromosomes are attached to kinetochore microtubules via a multiprotein complex called the kinetochore . Polar microtubules interdigitate at the spindle midzone and push the spindle poles apart via motor proteins.