enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chebyshev function - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_function

    The second Chebyshev function can be seen to be related to the first by writing it as = ⁡where k is the unique integer such that p k ≤ x and x < p k + 1.The values of k are given in OEIS: A206722.

  3. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    The Taylor polynomials for ln(1 + x) only provide accurate approximations in the range −1 < x1. For x > 1, Taylor polynomials of higher degree provide worse approximations. The Taylor approximations for ln(1 + x) (black). For x > 1, the approximations diverge. Pictured is an accurate approximation of sin x around the point x = 0. The ...

  4. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm of x is generally written as ln x, log e x, or sometimes, if the base e is implicit, simply log x. [2] [3] Parentheses are sometimes added for clarity, giving ln(x), log e (x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.

  5. Prime number theorem - Wikipedia

    en.wikipedia.org/wiki/Prime_number_theorem

    for all x > 1. Suppose now that ζ(1 + iy) = 0. Certainly y is not zero, since ζ(s) has a simple pole at s = 1. Suppose that x > 1 and let x tend to 1 from above. Since () has a simple pole at s = 1 and ζ(x + 2iy) stays analytic, the left hand side in the previous inequality tends to 0, a contradiction.

  6. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    ln(r) is the standard natural logarithm of the real number r. Arg(z) is the principal value of the arg function; its value is restricted to (−π, π]. It can be computed using Arg(x + iy) = atan2(y, x). Log(z) is the principal value of the complex logarithm function and has imaginary part in the range (−π, π].

  7. Prime-counting function - Wikipedia

    en.wikipedia.org/wiki/Prime-counting_function

    In mathematics, the prime-counting function is the function counting the number of prime numbers less than or equal to some real number x. [1] [2] It is denoted by π(x) (unrelated to the number π). A symmetric variant seen sometimes is π 0 (x), which is equal to π(x) − 12 if x is exactly a prime number, and equal to π(x) otherwise.

  8. Binomial theorem - Wikipedia

    en.wikipedia.org/wiki/Binomial_theorem

    In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power ⁠ (+) ⁠ expands into a polynomial with terms of the form ⁠ ⁠, where the exponents ⁠ ⁠ and ⁠ ⁠ are nonnegative integers satisfying ⁠ + = ⁠ and the coefficient ⁠ ⁠ of each term is a specific positive integer ...

  9. Chebyshev polynomials - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_polynomials

    The real part of the other side is a polynomial in cos x and sin x, in which all powers of sin x are even and thus replaceable through the identity cos 2 x + sin 2 x = 1. By the same reasoning, sin nx is the imaginary part of the polynomial, in which all powers of sin x are odd and thus, if one factor of sin x is factored out, the remaining ...