enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gamma ray - Wikipedia

    en.wikipedia.org/wiki/Gamma_ray

    Gamma decay may also follow nuclear reactions such as neutron capture, nuclear fission, or nuclear fusion. Gamma decay is also a mode of relaxation of many excited states of atomic nuclei following other types of radioactive decay, such as beta decay, so long as these states possess the necessary component of nuclear spin. When high-energy ...

  3. Photodisintegration - Wikipedia

    en.wikipedia.org/wiki/Photodisintegration

    The incoming gamma ray effectively knocks one or more neutrons, protons, or an alpha particle out of the nucleus. [1] The reactions are called (γ,n), (γ,p), and (γ,α), respectively. Photodisintegration is endothermic (energy absorbing) for atomic nuclei lighter than iron and sometimes exothermic (energy releasing) for atomic nuclei heavier ...

  4. Commonly used gamma-emitting isotopes - Wikipedia

    en.wikipedia.org/wiki/Commonly_used_gamma...

    It has a half-life of 30 years, and decays by beta decay without gamma ray emission to a metastable state of barium-137 (137m Ba). Barium-137m has a half-life of a 2.6 minutes and is responsible for all of the gamma ray emission in this decay sequence. The ground state of barium-137 is stable. The photon energy (energy of a single gamma ray) of ...

  5. Decay energy - Wikipedia

    en.wikipedia.org/wiki/Decay_energy

    Types of radioactive decay include gamma ray; beta decay (decay energy is divided between the emitted electron and the neutrino which is emitted at the same time) alpha decay; The decay energy is the mass difference Δm between the parent and the daughter atom and particles. It is equal to the energy of radiation E.

  6. Radioactive decay - Wikipedia

    en.wikipedia.org/wiki/Radioactive_decay

    The decay energy is initially released as the energy of emitted photons plus the kinetic energy of massive emitted particles (that is, particles that have rest mass). If these particles come to thermal equilibrium with their surroundings and photons are absorbed, then the decay energy is transformed to thermal energy, which retains its mass.

  7. Radioluminescence - Wikipedia

    en.wikipedia.org/wiki/Radioluminescence

    Radioluminescence is the phenomenon by which light is produced in a material by bombardment with ionizing radiation such as alpha particles, beta particles, or gamma rays. Radioluminescence is used as a low level light source for night illumination of instruments or signage.

  8. Radiation - Wikipedia

    en.wikipedia.org/wiki/Radiation

    Gamma radiation detected in an isopropanol cloud chamber. Gamma (γ) radiation consists of photons with a wavelength less than 3 × 10 −11 m (greater than 10 19 Hz and 41.4 keV). [4] Gamma radiation emission is a nuclear process that occurs to rid an unstable nucleus of excess energy after most nuclear reactions. Both alpha and beta particles ...

  9. Two-photon physics - Wikipedia

    en.wikipedia.org/wiki/Two-photon_physics

    Two-photon physics, also called gammagamma physics, is a branch of particle physics that describes the interactions between two photons. Normally, beams of light pass through each other unperturbed. Inside an optical material, and if the intensity of the beams is high enough, the beams may affect each other through a variety of non-linear ...