Search results
Results from the WOW.Com Content Network
The conduction of current of intrinsic semiconductor is enabled purely by electron excitation across the band-gap, which is usually small at room temperature except for narrow-bandgap semiconductors, like Hg 0.8 Cd 0.2 Te. The conductivity of a semiconductor can be modeled in terms of the band theory of solids.
Electrical conductivity of water samples is used as an indicator of how salt-free, ion-free, or impurity-free the sample is; the purer the water, the lower the conductivity (the higher the resistivity). Conductivity measurements in water are often reported as specific conductance, relative to the conductivity of pure water at 25 °C.
The conductivity of semiconductors may easily be modified by introducing impurities into their crystal lattice. The process of adding controlled impurities to a semiconductor is known as doping. The amount of impurity, or dopant, added to an intrinsic (pure) semiconductor varies its level of conductivity. [26]
A compound semiconductor is a semiconductor compound composed of chemical elements of at least two different species. These semiconductors form for example in periodic table groups 13–15 (old groups III–V), for example of elements from the Boron group (old group III, boron, aluminium, gallium, indium) and from group 15 (old group V, nitrogen, phosphorus, arsenic, antimony, bismuth).
In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in which electrons are normally present at absolute zero temperature, while the conduction band is the lowest range of vacant electronic states.
The name "valence band" was coined by analogy to chemistry, since in semiconductors (and insulators) the valence band is built out of the valence orbitals. In a metal or semimetal, the Fermi level is inside of one or more allowed bands. In semimetals the bands are usually referred to as "conduction band" or "valence band" depending on whether ...
In an intrinsic or lightly doped semiconductor, μ is close enough to a band edge that there are a dilute number of thermally excited carriers residing near that band edge. In semiconductors and semimetals the position of μ relative to the band structure can usually be controlled to a significant degree by doping or gating.
The carrier concentration can be calculated by treating electrons moving back and forth across the bandgap just like the equilibrium of a reversible reaction from chemistry, leading to an electronic mass action law. The mass action law defines a quantity called the intrinsic carrier concentration, which for undoped materials: