Search results
Results from the WOW.Com Content Network
The aliquot sum function can be used to characterize several notable classes of numbers: 1 is the only number whose aliquot sum is 0. A number is prime if and only if its aliquot sum is 1. [1] The aliquot sums of perfect, deficient, and abundant numbers are equal to, less than, and greater than the number itself respectively. [1]
The aliquot sequence starting with a positive integer k can be defined formally in terms of the sum-of-divisors function σ 1 or the aliquot sum function s in the following way: [1] = = = > = = = If the s n-1 = 0 condition is added, then the terms after 0 are all 0, and all aliquot sequences would be infinite, and we can conjecture that all aliquot sequences are convergent, the limit of these ...
The sum of proper divisors of a number is called its aliquot sum, so a perfect number is one that is equal to its aliquot sum. Equivalently, a perfect number is a number that is half the sum of all of its positive divisors; in symbols, σ 1 ( n ) = 2 n {\displaystyle \sigma _{1}(n)=2n} where σ 1 {\displaystyle \sigma _{1}} is the sum-of ...
The period of the sequence, or order of the set of sociable numbers, is the number of numbers in this cycle. If the period of the sequence is 1, the number is a sociable number of order 1, or a perfect number—for example, the proper divisors of 6 are 1, 2, and 3, whose sum is again 6. A pair of amicable numbers is a set of sociable numbers of ...
A related concept is that of a perfect number, which is a number that equals the sum of its own proper divisors, in other words a number which forms an aliquot sequence of period 1. Numbers that are members of an aliquot sequence with period greater than 2 are known as sociable numbers.
Aliquot part, a proper divisor of an integer; Aliquot sum, the sum of the aliquot parts of an integer; Aliquot sequence, a sequence of integers in which each number is the aliquot sum of the previous number
An abundant number whose abundance is greater than any lower number is called a highly abundant number, and one whose relative abundance (i.e. s(n)/n ) is greater than any lower number is called a superabundant number; Every integer greater than 20161 can be written as the sum of two abundant numbers. The largest even number that is not the sum ...
Divisor function σ 0 (n) up to n = 250 Sigma function σ 1 (n) up to n = 250 Sum of the squares of divisors, σ 2 (n), up to n = 250 Sum of cubes of divisors, σ 3 (n) up to n = 250. In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer.