Search results
Results from the WOW.Com Content Network
Parts-per-million cube of relative abundance by mass of elements in an average adult human body down to 1 ppm. About 99% of the mass of the human body is made up of six elements: oxygen, carbon, hydrogen, nitrogen, calcium, and phosphorus. Only about 0.85% is composed of another five elements: potassium, sulfur, sodium, chlorine, and magnesium ...
After being carried in blood to a body tissue in need of oxygen, O 2 is handed off from the heme group to monooxygenase, an enzyme that also has an active site with an atom of iron. [9] Monooxygenase uses oxygen for many oxidation reactions in the body. Oxygen that is suspended in the blood plasma equalizes into the tissue according to Henry's law.
This is an accepted version of this page This is the latest accepted revision, reviewed on 24 February 2025. List of organ systems in the human body Part of a series of lists about Human anatomy General Features Regions Variations Movements Systems Structures Arteries Bones Eponymous Foramina Glands endocrine exocrine Lymphatic vessels Nerves Organs Systems Veins Muscles Abductors Adductors ...
A large fraction of the chemical elements that occur naturally on the Earth's surface are essential to the structure and metabolism of living things. Four of these elements (hydrogen, carbon, nitrogen, and oxygen) are essential to every living thing and collectively make up 99% of the mass of protoplasm. [1]
The human body needs iron for oxygen transport. Oxygen (O 2) is required for the functioning and survival of nearly all cell types. Oxygen is transported from the lungs to the rest of the body bound to the heme group of hemoglobin in red blood cells. In muscles cells, iron binds oxygen to myoglobin, which regulates its release.
Aerobic respiration requires oxygen (O 2) in order to create ATP.Although carbohydrates, fats and proteins are consumed as reactants, aerobic respiration is the preferred method of pyruvate production in glycolysis, and requires pyruvate be transported the mitochondria in order to be oxidized by the citric acid cycle.
Several grams are produced per day in the human body within the mitochondria. [5] O 2 + e − → O − 2. Competing with its formation, superoxide is destroyed by the action of superoxide dismutases, enzymes that catalyze its disproportionation: 2 O − 2 + 2H + → O 2 + H 2 O 2. hydrogen peroxide (H 2 O 2) is also produced as a side product ...
Red blood cells (RBCs), referred to as erythrocytes (from Ancient Greek erythros ' red ' and kytos ' hollow vessel ', with -cyte translated as 'cell' in modern usage) in academia and medical publishing, also known as red cells, [1] erythroid cells, and rarely haematids, are the most common type of blood cell and the vertebrate's principal means of delivering oxygen (O 2) to the body tissues ...