Search results
Results from the WOW.Com Content Network
The sample covariance matrix has in the denominator rather than due to a variant of Bessel's correction: In short, the sample covariance relies on the difference between each observation and the sample mean, but the sample mean is slightly correlated with each observation since it is defined in terms of all observations.
If the statistic is the sample mean, ... The following expressions can be used to calculate the upper ... the reference gives the exact formulas for any sample size ...
Algorithms for calculating variance play a major role in computational statistics.A key difficulty in the design of good algorithms for this problem is that formulas for the variance may involve sums of squares, which can lead to numerical instability as well as to arithmetic overflow when dealing with large values.
The sample mean, on the other hand, is an unbiased [5] estimator of the population mean μ. [3] Note that the usual definition of sample variance is = = (¯), and this is an unbiased estimator of the population variance.
Given an r-sample statistic, one can create an n-sample statistic by something similar to bootstrapping (taking the average of the statistic over all subsamples of size r). This procedure is known to have certain good properties and the result is a U-statistic. The sample mean and sample variance are of this form, for r = 1 and r = 2.
The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4]
The arithmetic mean (or simply mean or average) of a list of numbers, is the sum of all of the numbers divided by their count.Similarly, the mean of a sample ,, …,, usually denoted by ¯, is the sum of the sampled values divided by the number of items in the sample.
The weighted sample mean, ¯, is itself a random variable. Its expected value and standard deviation are related to the expected values and standard deviations of the observations, as follows. For simplicity, we assume normalized weights (weights summing to one).