Ad
related to: two phase psv calculation practice equationsgenerationgenius.com has been visited by 10K+ users in the past month
- Teachers Try it Free
Get 30 days access for free.
No credit card or commitment needed
- Grades 6-8 Math Lessons
Get instant access to hours of fun
standards-based 6-8 videos & more.
- Grades 3-5 Math lessons
Get instant access to hours of fun
standards-based 3-5 videos & more.
- K-8 Math Videos & Lessons
Used in 20,000 Schools
Loved by Students & Teachers
- Teachers Try it Free
Search results
Results from the WOW.Com Content Network
The Lockhart–Martinelli parameter is a dimensionless number used in internal two-phase flow calculations. [1] It expresses the liquid fraction of a flowing fluid. Its main application is in two-phase pressure drop and boiling/condensing heat transfer calculations. It is defined as:
There are a number of correlations for slip ratio. For homogeneous flow, S = 1 (i.e. there is no slip). The Chisholm correlation [2] [3] is: = The Chisholm correlation is based on application of the simple annular flow model and equates the frictional pressure drops in the liquid and the gas phase.
In power engineering, the power-flow study, or load-flow study, is a numerical analysis of the flow of electric power in an interconnected system. A power-flow study usually uses simplified notations such as a one-line diagram and per-unit system, and focuses on various aspects of AC power parameters, such as Voltage, voltage angles, real power and reactive power.
Two-phase power can be derived from a three-phase source using two transformers in a Scott connection: One transformer primary is connected across two phases of the supply. The second transformer is connected to a center-tap of the first transformer, and is wound for 86.6% of the phase-to-phase voltage on the three-phase system.
In fluid dynamics, the Buckley–Leverett equation is a conservation equation used to model two-phase flow in porous media. [1] The Buckley–Leverett equation or the Buckley–Leverett displacement describes an immiscible displacement process, such as the displacement of oil by water, in a one-dimensional or quasi-one-dimensional reservoir.
Different modes of two-phase flows. In fluid mechanics, two-phase flow is a flow of gas and liquid — a particular example of multiphase flow.Two-phase flow can occur in various forms, such as flows transitioning from pure liquid to vapor as a result of external heating, separated flows, and dispersed two-phase flows where one phase is present in the form of particles, droplets, or bubbles in ...
Velocity distribution is difficult to calculate due to the lack of knowledge of the velocities of each phase at a single point. There are several ways to model multiphase flow, including the Euler-Langrange method, where the fluid phase is treated as a continuum by solving the Navier-Stokes equations .
For example, balanced two-phase power can be obtained from a three-phase network by using two specially constructed transformers, with taps at 50% and 86.6% of the primary voltage. This Scott T connection produces a true two-phase system with 90° time difference between the phases.
Ad
related to: two phase psv calculation practice equationsgenerationgenius.com has been visited by 10K+ users in the past month