enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Irrationality sequence - Wikipedia

    en.wikipedia.org/wiki/Irrationality_sequence

    The powers of two whose exponents are powers of two, , form an irrationality sequence.However, although Sylvester's sequence. 2, 3, 7, 43, 1807, 3263443, ... (in which each term is one more than the product of all previous terms) also grows doubly exponentially, it does not form an irrationality sequence.

  3. Irrational number - Wikipedia

    en.wikipedia.org/wiki/Irrational_number

    Being a G-delta set—i.e., a countable intersection of open subsets—in a complete metric space, the space of irrationals is completely metrizable: that is, there is a metric on the irrationals inducing the same topology as the restriction of the Euclidean metric, but with respect to which the irrationals are complete.

  4. Hermite's problem - Wikipedia

    en.wikipedia.org/wiki/Hermite's_problem

    Rational numbers are algebraic numbers that satisfy a polynomial of degree 1, while quadratic irrationals are algebraic numbers that satisfy a polynomial of degree 2. For both these sets of numbers we have a way to construct a sequence of natural numbers (a n) with the property that each sequence gives a unique real number and such that this real number belongs to the corresponding set if and ...

  5. Transcendental number theory - Wikipedia

    en.wikipedia.org/wiki/Transcendental_number_theory

    There is a powerful theorem that two complex numbers that are algebraically dependent belong to the same Mahler class. [24] [31] This allows construction of new transcendental numbers, such as the sum of a Liouville number with e or π.

  6. Proof that e is irrational - Wikipedia

    en.wikipedia.org/wiki/Proof_that_e_is_irrational

    The first term is an integer, and every fraction in the sum is actually an integer because n ≤ b for each term. Therefore, under the assumption that e is rational, x is an integer. We now prove that 0 < x < 1. First, to prove that x is strictly positive, we insert the above series representation of e into the definition of x and obtain =!

  7. Quadratic irrational number - Wikipedia

    en.wikipedia.org/wiki/Quadratic_irrational_number

    Quadratic irrationals are used in field theory to construct field extensions of the field of rational numbers Q. Given the square-free integer c, the augmentation of Q by quadratic irrationals using √ c produces a quadratic field Q(√ c). For example, the inverses of elements of Q(√ c) are of the same form as the above algebraic numbers:

  8. Sum of normally distributed random variables - Wikipedia

    en.wikipedia.org/wiki/Sum_of_normally...

    This means that the sum of two independent normally distributed random variables is normal, with its mean being the sum of the two means, and its variance being the sum of the two variances (i.e., the square of the standard deviation is the sum of the squares of the standard deviations). [1]

  9. Irrationality measure - Wikipedia

    en.wikipedia.org/wiki/Irrationality_measure

    The irrationality exponent or Liouville–Roth irrationality measure is given by setting (,) =, [1] a definition adapting the one of Liouville numbers — the irrationality exponent () is defined for real numbers to be the supremum of the set of such that < | | < is satisfied by an infinite number of coprime integer pairs (,) with >.