Search results
Results from the WOW.Com Content Network
Expected values can also be used to compute the variance, by means of the computational formula for the variance = [] ( []). A very important application of the expectation value is in the field of quantum mechanics.
In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value evaluated with respect to the conditional probability distribution. If the random variable can take on only a finite number of values, the "conditions" are that the variable can only take on a subset of ...
The standard deviation is more amenable to algebraic manipulation than the expected absolute deviation, and, together with variance and its generalization covariance, is used frequently in theoretical statistics; however the expected absolute deviation tends to be more robust as it is less sensitive to outliers arising from measurement ...
In probability theory, the Fourier transform of the probability distribution of a real-valued random variable is closely connected to the characteristic function of that variable, which is defined as the expected value of , as a function of the real variable (the frequency parameter of the Fourier transform).
A frequency distribution shows a summarized grouping of data divided into mutually exclusive classes and the number of occurrences in a class. It is a way of showing unorganized data notably to show results of an election, income of people for a certain region, sales of a product within a certain period, student loan amounts of graduates, etc.
To compute the quotient Y = U/V of two independent random variables U and V, define the following transformation: = / = Then, the joint density p(y,z) can be computed by a change of variables from U,V to Y,Z, and Y can be derived by marginalizing out Z from the joint density.
The basic way to maximize a differentiable function is to find the stationary points (the points where the derivative is zero); since the derivative of a sum is just the sum of the derivatives, but the derivative of a product requires the product rule, it is easier to compute the stationary points of the log-likelihood of independent events ...
Indeed, the expected value [] is not defined for any positive value of the argument , since the defining integral diverges. The characteristic function E [ e i t X ] {\displaystyle \operatorname {E} [e^{itX}]} is defined for real values of t , but is not defined for any complex value of t that has a negative imaginary part, and hence ...